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A Solution method: details

The canonical endogenous job destruction model generates highly nonlinear unem-

ployment dynamics, because the endogenous job-destruction cutoff moves along the

cross-sectional idiosyncratic match quality distribution. We analyze the model through

a lens of global nonlinear solution that is obtained from the sequence-based approach

developed in Lee (2025).

One of the most challenging steps in obtaining the global solution of the dynamic

stochastic general equilibrium (DSGE, hereafter) models lies in specifying the correct

law of motion of the endogenous aggregate allocation: the law of motion can be cor-

rectly specified when the exact solution is known, while the solution can be obtained

only after the law of motion is correctly specified. The repeated transition method

overcomes this hurdle by utilizing the ergodicity of DSGE models. Under the ergod-

icity, if the simulated path is long enough, all the possible equilibrium allocations are

realized on the simulated path. Then, the rationally expected state-contingent future

outcomes can be correctly specified by combining the expected outcomes realized on

the path without specifying the law of motion for these endogenous allocations.

Suppose an agent is at period t where the optimal consumption and saving de-

cision requires specifying the rationally expected future value or marginal value. A

classic state space-based approach requires the law of motion for the endogenous ag-

gregate state, followed by the interpolation step to obtain the state-contingent value

or marginal value functions. In contrast, the repeated transition method requires only

identifying a period with the outcome realizations the same as each contingent state

realization for period t+ 1.

Algorithm illustration We elaborate on the detailed steps for the algorithm

based on our baseline model.

1. Simulate a T -period simulation path of the exogenous aggregate shock process
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{At}Tt=0, where T is large enough.1

2. For an ith iteration, guess the time series of the following allocations:2

{n(i)
t , q

(i)
t , v

(i)
t , u

(i)
t , c

(i)
t , w

(i)
t , Z̃

(i)
t , Z

(i)

t , H
(i)
t }Tt=1.

3. Solve the problem backward from the terminal period T , applying the repeated-

transition method technique to the optimality conditions. This technique is

elaborated in detail in the next section. For example, calculate the right-hand

side (RHS) of the job destruction condition:

RHS
(i)
t = βEt

[
(1−H

(rv)
t+1 )

(
c
(rv)
t+1

c
(i)
t

)−σ(
A

(rv)
t+1Z

(rv)

t+1 − w
(rv)
t+1 + (1− λ)

κ

q
(rv)
t+1

)]
(1)

Then, using RHS, obtain q∗t as follows:

q∗t =
κ

RHS
(i)
t

.

In Equation (1), the superscript (rv) means that the allocation is a random

variable. Likewise, from the backward solution, we obtain

{q∗t , v∗t , w∗
t , c

∗
t , Z̃

∗
t , Z

∗
t , H

∗
t }Tt=1.

4. Using the conditionally optimal allocations with superscript ∗, we simulate allo-

cations forward starting from period 0 to obtain the other conditionally optimal

1The aggregate productivity process is discretized by the Tauchen method using 11 grid points
for the three-standard deviation range, and T is set at 5,000.

2We use the pre-computed steady-state level as the initial guess for all periods.
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allocations. For example,

n∗
t = (1−H∗

t )[(1− λ)n∗
t−1 + v∗t−1q

∗
t−1] (2)

where n∗
0 is fixed as the steady-state employment level.3 Then, we obtain the

following conditionally optimal allocations:

{n∗
t , u

∗
t}Tt=1.

5. Check if the following inequality is satisfied:4

tol > sup
y∈Ω

sup
t

||y∗t − y
(i)
t ||

where Ω = {n, q, v, u, c, w, Z̃, Z,H}

6. If the inequality is satisfied, ith guess is the solution. Otherwise, we update the

guess using the following convex combination and return to step 3.

y
(i+1)
t = ωy

(i)
t + (1− ω)y∗t , for∀t

for y ∈ Ω = {n, q, v, u, c, w, Z̃, Z,H}.

ω is the weight on the previous iteration’s allocation.

The convergence of the method hinges on the stability and the uniqueness of the

equilibrium.

In Step 3 of the algorithm, it is necessary to identify state contingent allocations

for the following variables:

{Hrv
t+1, c

rv
t+1, Z

rv

t+1, w
rv
t+1, q

rv
t+1}

3The stability of the solution helps the path converge to the equilibrium level after several periods.
4tol is the tolerance level for the convergence criterion.

5



Due to the ergodicity of the simulated path, we can find a period where the en-

dogenous aggregate state is the same as period t+ 1 while the exogenous shocks are

realized differently on the equilibrium path. We use n
(i)
t as the endogenous aggregate

state, as this is the only allocation that dynamically evolves. Specifically, we take the

following steps:

3-1. Form a partition P Ã of the simulated path based on the aggregate productivity

realizations.

P Ã = {τ |Aτ = Ã} for ∀Ã ∈ A.

where A is the support (grids) of the productivity.

3-2. For each Ã, find period τ Ã ∈ P Ã such that the number of employed workers

n
(i)
τ is identical (closest) to period t+ 1.5

τ Ã = arg min
τ∈PÃ

||n(i)
τ − n

(i)
t+1||

3-3. Compute the rationally expected future variables using the allocations in period

τ Ã for each Ã. For example, the computation of Equation (1) is as follows:

RHS
(i)
t = β

∑
Ã∈A

ΓA,Ã

(1−H
(i)

τ Ã
)

(
c
(i)

τ Ã

c
(i)
t

)−σ(
ÃZ

(i)

τ Ã
− w

(i)

τ Ã
+ (1− λ)

κ

q
(i)

τ Ã

) .

where ΓA,Ã is the transition probability of the aggregate productivity from a

level A to a level Ã.

5This step can be replaced by finding the closest period from above and the closest period from
below. The detailed Explanation is in Lee (2025).
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B Data, transformations and empirics

B.1 Data

We compute transition rates from IPUMS CPS micro data following Elsby, Hobijn,

and Şahin (2015). Our sample consists of civilians aged 16–64; individuals are classi-

fied into E, U, and N using CPS employment-status codes, and adjacent months are

linked using the CPS one-month longitudinal weight lnkfw1mwt. Short U–N–U and

N–U–N “cycler” sequences are recoded so that the middle observation matches its

neighbors (classification-error adjustment), and monthly transition probabilities pij

are computed as the weighted fraction of persons in origin state i who are observed in

destination state j in the following month. The resulting 3×3 transition matrices are

then adjusted so that they map cross-sectional employment and unemployment stocks

between t and t+1 (margin-error correction in the spirit of Abowd and Zellner (1985)).

Before seasonal adjustment, outliers around the 1994 CPS redesign (1994–1996) are

detected and replaced using tsoutliers::tso. Each flow series is then seasonally

adjusted with X-13ARIMA-SEATS via the seasonal package Sax and Eddelbuettel

(2018), applied to monthly data with at least two years of observations and with in-

ternal gaps linearly interpolated. Figure B.1 shows the resulting seasonally adjusted

transition probabilities by origin labor market state.
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Figure B.1: Transition rates between labor market states.

Notes: The panels plot seasonally adjusted monthly transition probabilities between employment

(E), unemployment (U), and inactivity (N) constructed from IPUMS CPS micro data following

Elsby, Hobijn, and Şahin (2015).

B.2 Measuring matching efficiency: Ahn and Crane (2020)

As in Ahn and Crane (2020), we assume a Cobb–Douglas matching function of the

form Mt = µtU
σ
t V

1−σ
t , where Mt denotes matches (hires), Ut unemployment, Vt va-

cancies, and µt captures (time-varying) matching efficiency. Dividing by unemploy-

ment yields a job-finding equation for the unemployed, ft = Mt/Ut, which implies

ln ft = lnµt + (1 − σ) ln(θt), where θt = Vt/Ut is labor market tightness. Writing

lnµt = ln µ̄ + εt gives the empirical specification ln ft = ln µ̄ + α ln(θt) + εt, with

α = 1 − σ. Time variation in matching efficiency is then summarized by the fitted

residual εt.

We implement this idea for two related series. Our baseline matching-efficiency

series uses the CPS job-finding probability of the unemployed as the dependent vari-

able ft and defines tightness as vacancies per unemployed, θt = vt/ut. Our effective-

searcher series instead uses a generalized job-filling rate that averages transitions

from unemployment and inactivity into employment using labor-force shares, and it
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defines tightness as vacancies per effective searcher, θefft = vt/ũt, where ũt denotes an

effective-searcher measure combining unemployed and inactive workers (see the dis-

cussion in the main text). In both cases, we interpret the regression residual as a log

matching-efficiency index; we use the baseline series in our main empirical analysis

and the effective-searcher series in robustness checks.

Table B.1: Matching-function regressions for baseline and effective-searcher matching-
efficiency series

Specification

Variable Baseline: log

job-finding (U→E) on

log tightness vt/ut

Effective-searcher: log

generalized job-filling

on log tightness vt/ũt

Constant -1.127*** -2.257***

(0.008) (0.012)

Log tightness, log(θt) 0.244***

(0.011)

Log generalized tightness,

log(θefft )

0.057***

(0.010)

Note: Sample: Jan 1976 to Jun 2025. Data are monthly U.S. aggregates for employment,
unemployment, vacancies, and CPS-based E–U–N transition probabilities. Column (1)
regresses the log CPS job-finding rate of the unemployed on log labor market tightness
θt = vt/ut (vacancies per unemployed); the residual from this regression defines our baseline
matching-efficiency series. Column (2) regresses a generalized CPS job-filling rate, which
averages transitions from unemployment and inactivity into employment using labor-force
shares, on log generalized tightness θefft = vt/ũt, where ũt is a measure of effective searchers
combining unemployed and inactive workers. The residual from this regression defines the
effective-searcher matching-efficiency series used in robustness checks. Standard errors are
conventional OLS (i.i.d.). Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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B.3 Derive approximate Beveridge curve dynamics

We start with the rewritten law of motion of employment,

vt = M−1(
st

1− st
− (ut+1 − ut)

1

1− st
,mt, ut) . (3)

First, we have to define the matching function. To keep tractability we assume

a Cobb-Douglas Matching function, M(mt, vt, ut) = mtv
αu1−α

t . Here 1 − α is the

elasticity of the matching function to unemployment. Vacancies are then a function

of the following equation,

vt = (
st

1−st
− (ut+1 − ut)

1
1−st

mtu
1−α
t

)
1
α . (4)

We can then take logs and approximate each term around its steady state.

ln(vt) =
1

α
[ln(st −∆ut+1)− ln(1− st)− ln(mt)− (1− α) ln(ut)] . (5)

Note that ∆ut+1 is 0 in steady state.

The first order approximation is then,

vt − v

v
≈ 1

α
[
st − s

s
− u

s

∆ut+1

u
+

s

1− s

st − s

s
− mt −m

m
− (1− α)

ut − u

u
] . (6)

We can collect terms and summarize each variable deviation as x̂t =
xt−x
x

which

yields,

v̂ =
vt − v

v
≈ 1

α
[

1

1− s
ŝt −

u

s
∆ût+1 − m̂t − (1− α)ût] . (7)

Parameterising this equation and adding deterministic components to control for

these in the data yields,

v̂t = βc + βtt+ βuût + βmm̂t + βsŝt + β∆u∆ût+1 + et, (8)
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Figure B.2: Derived log Separations, Matching efficiency, and Beveridge Curve shifts
in Levels.
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B.4 First-stage regression: Matching efficiency decomposi-

tion

Table B.2: First-stage regression: Matching efficiency on separations

Matching Efficiency

Separations 0.092

(0.022)

pUN 0.438

(0.130)

pNU 0.498

(0.594)

pEN 3.373

(1.172)

pNE 4.120

(0.569)

Constant -0.460

(0.052)

Observations 570

Note: Monthly U.S. data from January 1978 to June 2025. The dependent variable is matching efficiency. This
first-stage regression generates the residual (orthogonalized matching efficiency) used in the channels decomposition
reported in Table 3. The fitted values capture the endogenous separation channel, while the residuals capture the direct
matching effect orthogonal to separations. Controls include CPS inactivity-flow transitions: pUN (unemployment to
inactivity), pNU (inactivity to unemployment), pEN (employment to inactivity), and pNE (inactivity to employment).
Standard errors are conventional i.i.d. OLS standard errors.
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B.5 Robustness

Table B.3: Beveridge curve shifts, matching efficiency, and job separation (HP filter)

Beveridge Curve Shifts
Beveridge Curve Shifts

when ME ≥ 67th pctile(ME)

(1) (2) (3) (4)

Matching

Efficiency

Channels Matching

Efficiency

Channels

Matching

Efficiency

-0.069 0.360

(0.082) (0.095)

Separations 0.849 0.412

(0.045) (0.082)

Matching

Efficiency or-

thogonalized

to Separations

-0.324 0.138

(0.065) (0.103)

Constant -0.355 0.168 -0.144 -0.003

(0.065) (0.055) (0.064) (0.075)

Observations 570 570 190 190

Note: Monthly U.S. data from January 1978 to June 2025. The dependent variable is the Beveridge curve shift.
This table replicates the analysis in Table 3 using Hodrick–Prescott (Hodrick and Prescott, 1997) filter detrending
instead of the Rotemberg (Rotemberg, 1999) filter. Columns (1) and (3) report regressions of BC shifts on matching
efficiency. Columns (2) and (4) report the channels decomposition: BC shifts regressed on separations and matching
efficiency orthogonalized to separations. Columns (1)–(2) use the full sample, while columns (3)–(4) restrict to periods
when matching efficiency (ME) exceeds the 67th percentile. All variables are standardized. The decomposition is
implemented via a first-stage regression of matching efficiency on separations (including CPS inactivity-flow controls),
with the fitted values capturing the endogenous separation channel and the residuals capturing the orthogonalized
matching efficiency channel. The second-stage regressions control for log unemployment and CPS inactivity-flow
transitions (pUN , pNU , pEN , pNE); coefficients on these controls are suppressed. Standard errors are conventional
i.i.d. OLS standard errors.
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C Wage bargaining in the baseline model

Real values of employment and unemployment We specify the value of em-

ployment with productivity z and wage w, ṽe = ṽe(z, w;S) as follows:

ṽe(z, w;S) = w

+ ((1− λ) + λp(θ(S)))E
[
µ(S, S ′)(1−H(S ′))(ve(z′;S ′)− vu(z′;S ′))

∣∣J(z′;S ′) > 0
]

+ E [vu(z′;S ′)] (9)

In equilibrium, the wage is determined by Nash bargaining, resulting in w = w(z;S).

We define the value function of an employed worker earning the equilibrium wage

ve(z;S) := ṽe(z;S)(z, w(z;S);S) and the value function of an unemployed worker

vu = vu(z;S) as follows:

ve(z;S) = w(z;S)

+ ((1− λ) + λp(θ(S)))E
[
µ(S, S ′)(1−H(S ′))(ve(z′;S ′)− vu(z′;S ′))

∣∣J(z′;S ′) > 0
]

+ E [µ(S, S ′)vu(z′;S ′)] (10)

vu(z;S) = b+ p(θ(S))E
[
µ(S, S ′)(1−H(S ′))(ve(z, w′;S ′)− vu(z′;S ′))

∣∣J(z′;S ′) > 0
]

+ E [µ(S, S ′)vu(z′;S ′)] (11)

When a worker starts a period as unemployed, the worker engages in home produc-

tion b > 0 and searches for a job to be matched with a vacancy with the probability

p = p(θ(S)).

Firms (=jobs) We specify the value function of a firm that is matched with a

worker with productivity z and a wage level w:

J̃(z, w;S) = Az − w + (1− λ)E [µ(S, S ′)(1−H(S ′))J(z′;S ′)|J(z′;S ′) > 0] . (12)

14



In equilibrium, the wage is determined as w = w(z;S) by Nash bargaining. Based

on this, we define the value function J of a firm that pays out the equilibrium wage,

J(z;S) = J̃(z, w(z;S);S):

J(z;S) = Az − w(z;S) + (1− λ)E [µ(S, S ′)(1−H(S ′))J(z′;S ′)|J(z′;S ′) > 0] (13)

Wage bargaining A matched worker with productivity z and the firm determine

the wage by Nash bargaining. The worker’s bargaining power is η. The worker’s

benefit out of employment at wage w is ṽe(z, w;S), and the outside option value is

vu(z;S). The firms’ benefit out of employing the worker at wage w is J̃(z, w;S), and

the outside option is 0. This setup characterizes the following Nash bargaining:

w(z;S) = argmax
w

(ṽe(z, w;S)− vu(z;S))η
(
J̃(z, w;S)

)1−η

(14)

Then, from the optimality condition, we obtain the following condition:

(1− η)(ve(z;S)− vu(z;S)) = ηJ(z;S) (15)

D Job creation, destruction, and matching effi-

ciency

We show here the static consequences of matching efficiency changes to Job Creation,

Job Destruction and the Beveridge Curve.

In the spirit of Pissarides (2009), chapter 2 we describe the effect of matching

efficiency variations on the job destruction cutoff. Job creation and job destruction

contribute to the cutoff condition, which drives separation in our model. We show

that only the job creation condition is affected by matching efficiency variations.

Definition 1 (Job Creation curve).
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Firms create jobs until the expected cost κ
q(θ(S),)

of a new job match equals the present

discounted benefit the match, κ
q(θ(S),)

= (1−λ)
∑∞

i=0 E [µ(S, S ′)(1−H(S ′))J(z′;S ′)|J(z′;S ′) > 0].

Iterating the equation forward yields in steady state,

κ

q(m, θ)
=

(1− η)[z̄(zCs )− b]− ηκθ

[ 1
β(1−λ)(1−H(zCs ))

− 1]
. (16)

Proposition 1 (The job creation curve).

In the steady state, zCs (S) decreases in θ, ceteris paribus.

Definition 2 (Job Destruction Curve).

Firm-Worker matches dissolve when the benefit of the match to the firm falls below

0.This defines the cutoff point, zs = b+ η
1−η

κ− 1
1−η

(1−λ)
∑∞

i=1 E [µ(S, S ′)(1−H(S ′))J(z′;S ′)|J(z′;S ′) > 0].

The endogenous job separation cutoff zDs is determined at the productivity level

where a firm value becomes zero.

zDs (S) := argz{J(z;S) = 0} (17)

In steady state this yields,

zDs = b+
η

1− η
κ− 1

1− η

(1− η)[z̄(zs)− b]− ηκθ

[ 1
β(1−λ)(1−H(zDs ))

− 1]
. (18)

Note that matching efficiency does not enter the job destruction condition. Fur-

ther, tightness θ can be isolated from zDs . It then is clear that the next proposition

holds.

Proposition 2 (The job destruction curve).

In the steady state, zDs (S) increases in θ, ceteris paribus.

Proof. The result is immediate from Equation (18). ■
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Figure D.3: The job creation (JC) and job destruction condition (JD), with different
matching efficiencies.
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When the matched job value function J is recursively expressed, it is as follows:

zDs (S) =
(1− η)b+ ηθκ−W

(1− η)A
(19)

W =
∞∑
n=0

(1− λ)nE[µ(S, S(n))(1−H(S(n)))((1− η)(Az(n) − b)− ηθ(n)κ|J(z(n);S(n)) > 0]

(20)

From Equation (20), the sequential persistence in θ dynamically affects zDs through

θ(n), which is computationally handled in our global solution. In particular, a con-

temporaneous increase in matching efficiency does not directly affect reservation pro-

ductivity zDs , implying that increase in matching efficiency does not shift the job

destruction curve.

In the equilibrium, the reservation zs(S) is determined at zDs (S) = zCs (S)

E Extended baseline model with policy variables

Household We consider a representative household that is composed of a contin-

uum of unit measures of labor forces. The employed portion of the labor force earns

wages, and the unemployed portion engages in home production, all of which are
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treated as labor income W (S). The household holds the claim for the dividend D(S)

and saves for future dividend claims. Thus, the budget constraint is as follows:

c+ a′ = W (S) +D(S) + (a−D(S))︸ ︷︷ ︸
Ex-dividend equity value

−T (S) (21)

where T (S) is the lump-sum tax, and a is the value of the dividend claim. The

apostrophe indicates the future variables. The household has a temporal CRRA

utility and discounts future by β ∈ (0, 1). The recursive formulation of the households’

problem is as follows:

V (a;S) = max
c,a′

c1−σ

1− σ
+ βEV (a′;S ′) (22)

s.t. c+ a′ = W (S) +D(S) + (a−D(S))− T (S) (23)

Real values of employment and unemployment A continuum of a unit mea-

sure of ex-ante heterogeneous labor force is considered. Their labor productivity z is

distributed as follows:

z ∼ N(0, σz) (24)

When a worker is employed, they earn wage. Then, an exogenous Poisson separation

shock arrives at a rate of λ ∈ (0, 1). The worker continues to work in the following

period with a probability of (1 − λ) or searches for another job with probability λ

and gets matched with a new job with a probability of p = p(θ(S)).

ṽe(z, w;S) = w

+ ((1− λ) + λp(θ(S)))E
[
µ(S, S ′)(1−H(S ′))(ve(z;S ′)− vu(z;S ′))

∣∣J(z;S ′) > −Ff (S
′)
]

+ E [vu(z;S ′)] (25)

In the following period, a firm decides whether to lay off the worker, which is captured
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by endogenous separation rate H(S ′). All workers are assumed to participate in job

search when unemployed. All the future values are discounted by the stochastic

discount factor µ(S, S ′). Equation (25) characterizes the value of employment with

productivity z and wage w, ṽe = ṽe(z, w;S). In equilibrium, the wage is determined

by Nash bargaining, resulting in w = w(z;S). We define the value function of an

employed worker earning the equilibrium wage ve(z;S) := ṽe(z;S)(z, w(z;S);S) and

the value function of an unemployed worker vu = vu(z;S) as follows:

ve(z;S) = w(z;S)

+ ((1− λ) + λp(θ(S)))E
[
µ(S, S ′)(1−H(S ′))(ve(z;S ′)− vu(z;S ′))

∣∣J(z;S ′) > −Ff (S
′)
]

+ E [µ(S, S ′)vu(z;S ′)] (26)

vu(z;S) = b+ p(θ(S))E
[
µ(S, S ′)(1−H(S ′))(ve(z, w′;S ′)− vu(z;S ′))

∣∣J(z;S ′) > −Ff (S
′)
]

+ E [µ(S, S ′)vu(z;S ′)] (27)

When a worker starts a period as unemployed, the worker engages in home produc-

tion b > 0 and searches for a job to be matched with a vacancy with the probability

p = p(θ(S)).

Firms (=jobs) A firm (job) produces output using a CRS Cobb-Douglas function

with only a labor input.6 Equation (28) characterizes the value function of a firm

that is matched with a worker with productivity z and a wage level w:

J̃(z, w;S) = Az − w + (1− λ)E [µ(S, S ′)(1−H(S ′))J(z;S ′)|J(z;S ′) > −Ff (S
′)]

(28)

where µ(S, S ′) is the stochastic discount factor. In equilibrium, the wage is determined

as w = w(z;S) by Nash bargaining. Based on this, we define the value function J of

6The CRS production allows the firm-level characterization to boil down to the job-level charac-
terization as in other models in the literature.
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a firm that pays out the equilibrium wage, J(z;S) = J̃(z, w(z;S);S):

J(z;S) = Az − w(z;S) + (1− λ)E [µ(S, S ′)(1−H(S ′))J(z;S ′)|J(z;S ′) > −Ff (S
′)]

(29)

At the beginning of a period, a firm decides whether to destruct a job based on the

following individual rationality condition: J(z;S) > −Ff (S
′). It is worth noting that

all the value functions are written at the timing after the job destruction decision,

which eases the wage bargaining characterization. We define the endogenous job

destruction probability H(S) accordingly:

H(S) := P (J(z;S) < −Ff (S
′)) . (30)

We allow Ff (S) < 0, which captures the possibility of levying taxes for operating

firms.

Wage bargaining A matched worker with productivity z and the firm determine

the wage by Nash bargaining. The worker’s bargaining power is η. The worker’s

benefit out of employment at wage w is ṽe(z, w;S), and the outside option value is

vu(z;S). The firms’ benefit out of employing the worker at wage w is J̃(z, w;S), and

the outside option is 0. This setup characterizes the following Nash bargaining:

w(z;S) = argmax
w

(ṽe(z, w;S)− vu(z;S))η
(
J̃(z, w;S) + Ff (S)

)1−η

(31)

Government Government determines the firing regulation Ff . Depending on the

sign of the regulation term, a lump-sum tax or a lump-sum subsidy is imposed for
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the households.

T (S) = v(S)Fh(S)− (1− λ)H(S)(n−1 + v(S)q(θ(S)))︸ ︷︷ ︸
Endogenously fired workers

Ff (S) (32)

The lump-sum subsidy or tax is canceled out by the changes in the dividend, leading

to a net zero effect on consumption.

Equilibrium conditions In equilibrium, we require the following conditions:

[Free entry] κ−Fh(S)

= q(θ(S))(1− λ)E [µ(S, S ′)(1−H(S ′))J(z;S ′)|J(z;S ′) > −Ff (S
′)]

(33)

[Agg. output] Y (S) = A

∫
J(z;S)>−Ff (S)

zdΦ + b

∫
J(z;S)>−Ff (S)

dΦ (34)

[Resource const.] C(S) = Y (S)− κv(S) = W (S) +D(S)− T (S) (35)

The first is free entry conditions. Firms pay a cost κ when they post a vacancy. In

equilibrium, a firm’s expected profit and the vacancy posting cost balance. In the

national account, aggregate output Y balances with the aggregate consumption C

after accounting for the total vacancy posting cost. From the income side identity,

the consumption is equal to the sum of labor and capital (dividend) incomes minus

the lump-sum tax.

E.1 Equilibrium characterization

From the free entry condition, we derive

J̃(z, w;S) = Az − w +
κ−Fh(S)

q(θ(S))
. (36)
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Therefore,

J(z;S) = Az − w(z;S) +
κ−Fh(S)

q(θ(S))
. (37)

From the Nash bargaining, we have

(1− η)(ve(z;S)− vu(z;S)) = η(J(z;S) + Ff (S)) (38)

Combining (25) and (27) with (38), we obtain

ṽe(z, w;S)− vu(z;S) = w − b+ (1− p(θ(S)))
η

1− η

κ−Fh(S)

q(θ(S))
(39)

= w − b+
η

1− η

κ−Fh(S)

q(θ(S))
− η

1− η
θ(κ−Fh(S)) (40)

Thus, the Nash bargaining outcome becomes

(1− η)

(
w(z;S)− b+

η

1− η

κ−Fh(S)

q(θ(S))
− η

1− η
θ(κ−Fh(S))

)
= η

(
Az − w(z;S) +

κ−Fh(S)

q(θ(S))
−Ff (S)

)
, (41)

which leads to the following equilibrium wage characterization:

w(z;S) = (1− η)b+ η(Az + θ(κ−Fh(S))) + ηFf (S). (42)

Due to the endogenous decision for the job destruction, there exists the produc-

tivity threshold zs = zs(S) such that a firm becomes indifferent between keeping the
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job and destruction:

zs(S) := argz{J(z;S) = −Ff (S)} ⇐⇒ J(zs(S);S) = −Ff (S). (43)

⇐⇒ Azs(S)− w(zs(S);S) +
κ−Fh(S)

q(θ(S))
= −Ff (S) (44)

⇐⇒ (1− η)(Azs(S)− b)− ηθ(κ−Fh(S))− ηFf (S) +
κ−Fh(S)

q(θ(S))
= −Ff (S)

(45)

⇐⇒ zs(S) =
1

A

(
b+

η

1− η
θ(κ−Fh(S))−

1

1− η

κ−Fh(S)

q(θ(S))
−Ff (S)

)
(46)

Based on this threshold, we characterize the following endogenous separation proba-

bility:

H(S) := P(J(z;S) < −Ff (S)) = P(z < zs(S)) = Φ

(
zs(S)− 1

σz

)
(47)

The conditional average productivity of employed workers z = z(S) is as follows:

z(S) := E
[
z
∣∣J(z;S) > −Ff (S)

]
= E

[
z
∣∣z > zs(S)

]
(48)

= 1 + σz

ϕ( zs(S)−1
σz

)

1− Φ( zs(S)−1
σz

)
(49)

Similarly, the conditional average wage of employed workers w = w(S) is as follows:

w(S) := E
[
w(z;S)

∣∣J(z;S) > −Ff (S)
]

(50)

= (1− η)b+ η(Az + θ(κ−Fh(S))) + ηFf (S). (51)

Using these conditional averages, we can characterize the following job creation con-
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dition from (33) and (37):

κ−Fh(S)

q(θ(S))
= (1− λ)E [µ(S, S ′)(1−H(S ′))J(z;S ′)|J(z;S ′) > −Ff (S

′)] (52)

= (1− λ)E
[
µ(S, S ′)(1−H(S ′))

(
Az(S ′)− w(S ′) +

κ−Fh(S
′)

q(θ(S ′))

)]
(53)

= (1− λ)E [µ(S, S ′)(1−H(S ′)) ((1− η)(Az(S ′)− b)− ηθ(κ−Fh(S
′))

(54)

−ηFf (S
′) +

κ−Fh(S
′)

q(θ(S ′))

)]
. (55)

Table E.4 summarizes the set of assumptions and the equilibrium conditions of

the baseline model.

Table E.4: Summary of assumptions and the equilibrium conditions with policy vari-
ables

Description Equation

Aggregate productivity ln(A′) = ρA ln(A) + σAϵ

Aggregate matching efficiency ln(m′) = ρm ln(m) + σmϵ

Endogenous Job destruction H = Φ( zs−1
σz

)

Law of motion of employment n = (1− λ)(1−H)n∗
−1

Job creation condition κ−Fh

q(θ) = (1− λ)E[µ(1−H ′)
(
A′z′ − w′ +

κ−F ′
h

q(θ′)

)
]

Job destruction condition Azs = b+ η
1−η (κ−Fh)θ − 1

1−η
κ−Fh

q(θ) −Ff

Cond. mean match productivity z = 1 + σz
ϕ( zs−1

σz
)

1−Φ( zs−1
σz

)

Bargained average wage w = (1− η)b+ η[Az + θ(κ−Fh)] + ηFf (S)

Probability of finding a job p(θ) = mθ(1 + θξ)−
1
ξ

Probability of filling a vacancy q(θ) = m(1 + θξ)−
1
ξ

Resource constraint C = Azn+ b(1− n)− κv

Stochastic discount factor µ = β
(

C′

C

)−σ

Government budget balance T = vFh − (1− λ)Hn∗
−1Ff

Tightness θ = v
u

Unemployed u = 1− n
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F Dynamic implications of the Beveridge curve

The Beveridge curve captures the relationship between the contemporaneous un-

employment and vacancy posting rates. However, the dynamic implications of the

Beveridge curve are relatively less investigated in the literature. We mainly focus

on how a high/low vacancy posting rate affects the future unemployment dynamics.

All the allocations are obtained from the simulated path of 30,000 periods (months)

based on the global solution.

Figure F.4 plots the histograms of the future unemployment rates conditional on

the high (dark color) and low (bright color) contemporaneous vacancy posting rates

and the high (panel (a)) and low (panel (b)) contemporaneous unemployment rates.

The vertical dash-dotted and dashed lines are the average future unemployment rates

for high and low contemporaneous vacancy postings.

The high unemployment period is with unemployment rates greater than 8% and

lower than 10%. The low unemployment period is with unemployment rates greater

than 3% and lower than 5%. The high vacancy period is with vacancy posting rates

greater than 80th quantile (around 5.5%). The low vacancy period is with vacancy

posting rates lower than 20th quantile (around 2.7%).7 The average contemporaneous

unemployment rates of high and low vacancy periods are 8.26% and 8.73% for high

unemployment periods (panel (a)) and 4.17% and 4.14 % for low unemployment

periods (panel (b)). The average future unemployment rates of high and low vacancy

periods are 7.76% and 8.80% for high unemployment periods (panel (a)) and 4.16%

and 4.18 % for low unemployment periods (panel (b)).

When a high unemployment rate is observed, the future unemployment is sub-

7For the unemployment rate cutoffs, we alternatively define high unemployment period with
unemployment rates greater than 80th quantile (around 7.2%) and low unemployment period with
unemployment rates lower than 20th quantile (around 4.0%). The result stays unchanged by this
choice. However, the average contemporaneous unemployment rates become significantly different
between the high and low vacancy periods, which disturbs a fair comparison of future unemployment
rates; it is natural that contemporaneously different unemployment rates lead to different future
rates.
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Figure F.4: Conditional Distribution of the future unemployment rate
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stantially differently realized depending on the contemporaneous vacancy rate level.

On the other hand, this future unemployment dependence on the vacancy rate disap-

pears in the low unemployment periods. When the unemployment rate is high, and

the vacancy posting rate is low, the future unemployment rate is likely to stay at a

higher level than the periods with low vacancy posting rates.

We extend this analysis of one-period future unemployment to extended future pe-

riods. Figure F.5 plots the time-series average of the conditional dynamic stochastic

unemployment rate path with the 95% confidence interval. When a high unemploy-

ment rate is observed, depending on the level of contemporaneous vacancy posting

rate, the future paths of unemployment rates are significantly different. When the va-

cancy posting rate is low, the economy’s unemployment rate stays persistently higher

(dashed line in panel (a)) than the other (solid line in panel (a)). On the other hand,

the conditional unemployment path does not significantly depend on the vacancy

posting rate when a low unemployment rate is observed (panel (b)).

G State-dependent responsiveness: Other variables
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Figure F.5: Conditional dynamics of the unemployment rate
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Table G.5: State-dependent shock responsiveness of unemployment rate

Dependent variable: ut (%)

Model Data

TFPt (%) -5.878 0.353 -1.7 - 6.9
(0.041) (0.008) (0.37) (2.98)

TFPt × (1− n∗
t−1) (%) 0.226 0.88

(0.004) (0.49)
mt (%) 4.168 2.902 9.68 10.8

(0.063) (0.012) (0.029) (3.01)
mt × (1− n∗

t−1) (%) 0.023 1.08
(0.003) (2.75)

Constant Yes Yes Yes Yes
Observations 15,000 15,000 84 83
R2 0.642 0.994 0.7485
Adjusted R2 0.642 0.994
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Figure G.6: The nonlinear state-dependent responsiveness to TFP variations
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(a) ut/TFPt and u∗t−1: baseline
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(b) ut/TFPt and u∗t−1: exo. separation

Notes: u∗
t−1 is defined as ut−1 := 1− n∗

t−1.
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Figure G.7: The nonlinear state-dependent responsiveness to TFP variations
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(b) vt/TFPt and u∗t−1: baseline
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(c) TFPt and vt: exo. separation
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(d) vt/TFPt and u∗t−1: exo. separation

Notes: u∗
t−1 is defined as ut−1 := 1− n∗

t−1.
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Figure G.8: The nonlinear state-dependent responsiveness to TFP variations
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(b) θt/TFPt and u∗t−1: baseline
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(c) TFPt and θt: exo. separation

0 5 10 15 20 25

u
t-1
*  (%)

0

0.2

0.4

0.6

0.8

1

1.2

R
es

po
ns

iv
en

es
s:

 
t/T

F
P

t

High ME
SS ME
Low ME

(d) θt/TFPt and u∗t−1: exo. separation

Notes: u∗
t−1 is defined as ut−1 := 1− n∗

t−1.
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Figure G.9: The nonlinear state-dependent responsiveness to TFP variations
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(a) TFPt and wt: baseline
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(b) wt/TFPt and u∗t−1: baseline

-60 -40 -20 0 20 40 60
 TFP

t
 (%)

40

60

80

100

120

140

160

180

w
t (

%
)

High ME
SS ME
Low ME

(c) TFPt and wt: exo. separation

0 5 10 15 20 25

u
t-1
*  (%)

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

R
es

po
ns

iv
en

es
s:

 w
t/T

F
P

t

High ME
SS ME
Low ME

(d) wt/TFPt and u∗t−1: exo. separation

Notes: u∗
t−1 is defined as ut−1 := 1− n∗

t−1.
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H Hosios-implied efficiency

Figure H.10: The Beveridge curves: Hosios vs. Baseline
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Figure H.10 plots the equilibrium Beveridge curves of the Hosios-efficient model

(panel (a)) and the baseline model (panel (b)). Reflecting the dampened volatilities

of the unemployment and the vacancy posting, the Beveridge curve display narrower

variation along the two axes compared to the baseline model. We use the Hosios-

efficient equilibrium allocations as one benchmark for our policy discussion in the

following sections.

I Policy analysis

I.1 Optimal firing penalty policy

In this section, we study the optimal firing penalty(subsidy) policy with respect to

the equilibrium unemployment dynamics. Particularly, we focus on the constant fir-

ing penalty policy Ff , assuming that the policy is not frequently adjustable over the

business cycle. When Ff < 0, the corresponding policy is a firing subsidy, which

is equivalent to a tax to an operating job (firm) in our setup. We label this pol-

icy as the corporate tax. Depending on the policy parameter level and the sign,
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the endogenous job destruction, bargaining outcome, and vacancy posting conditions

are significantly affected, leading to variations in the unconditional unemployment

average and volatility.

Figure I.11: The optimal vacancy posting subsidy
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(b) Exogenous separation

Figure I.11 compares the unconditional unemployment mean and volatility vari-

ations over the policy parameter change for the baseline model (panel (a)) and for

the exogenous separation model (panel (b)). The baseline model with the endoge-

nous separation shows a stark trade-off between the mean and volatility when the

corporate tax rate increases (a negatively larger Ff ) after a threshold level, while

the exogenous separation model does not feature this trade-off. Notably, the Hosios-

efficient mean and volatilities are not jointly achievable by the single policy variation

in Ff . Therefore, depending on the government’s description, the optimal policy is

suboptimally determined.

I.2 Covid-19 and optimal firing policy

I.3 Optimal vacancy posting subsidy

In this section, we analyze the optimal vacancy posting subsidy that perfectly achieves

the Hosios-efficient vacancy posting dynamics. This policy analysis is hypothetical,
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Figure I.12: The optimal policy and other variables’ responses
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as we allow the vacancy posting subsidy to fluctuate period-by-period, which is infea-

sible in reality. However, the analysis is meaningful in showing the existence of the

optimal counter-cyclical subsidy plan and in analyzing the policy’s macroeconomic

implications.

Figure I.13: The optimal vacancy posting subsidy
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(a) Optimality check for the policy Fh
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(b) Time series of optimal subsidy Fh

Figure I.13 shows the optimality of the policy we compute based on the global

nonlinear solution. Panel (a) is a scatter plot of vacancy posting under the optimal

{Ff}Tt=0 in the horizontal axis and the Hosios-efficient vacancy postings in the vertical

axis. The scatter plot is perfectly aligned with the 45-degree line, which verifies the

optimality of the policy. Panel (b) shows the time series of the optimal policy in
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comparison to the aggregate output. The optimal vacancy posting subsidy is sharply

counter-cyclical, featuring the correlation coefficient with output at -0.91.

Figure I.14: Economy with optimal vacancy subsidy vs. Baseline
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(b) Unemployment

The optimal policy successfully recovers the optimal vacancy posting fluctuations.

However, it is sub-optimal with respect to the unemployment dynamics. Figure I.14

shows that the reduced vacancy posting volatility (panel (a)) backfires through the

heightened unemployment volatility (panel (b)), marking the unemployment volatility

at 11.30%. This backfire is through the endogenous job separation channel, which is

necessarily not captured by the model with exogenous job separation.

J Proofs

Proposition 3 (The shape of the elasticity).

The elasticity of the separation to the matching efficiency change is hump-shaped:

lim
m→0

∂

∂m

∂log(s(m))

∂log(m)
= 0, lim

m→∞

∂

∂m

∂log(s(m))

∂log(m)
= ∞, (56)

and limm→∞
∂
∂m

∂log(s(m))
∂log(m)

flips the sign only once.

Proof.
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Let λ ∈ (0, 1), D > 0, and A ∈ R be arbitrary constants. Define

u(m) = A− D

m
, Φ(u) =

∫ u

−∞
ϕ(t) dt,

where ϕ(u) = 1√
2π
e−u2/2 is the standard normal density and Φ its CDF. Then

s(m) = λ+ (1− λ) Φ
(
u(m)

)
, E(m) =

∂ ln s(m)

∂ lnm
=

m

s(m)

ds

dm
.

A direct differentiation shows

s′(m) = (1− λ)ϕ
(
u(m)

) D

m2
, E(m) =

(1− λ)D

ms(m)
ϕ
(
u(m)

)
.

i) Limits at the Boundaries

1. m → 0+ :

u(m) = A−D

m
→ −∞ =⇒ ϕ(u(m)) → 0 (super-exponentially), s(m) → λ > 0,

hence 0 ≤ E(m) → 0.

2. m → +∞ :

u(m) → A, s(m) → λ+ (1− λ)Φ(A) > 0,

but the prefactor 1/m drives E(m) ∼ const

m
→ 0.

Thus

lim
m→0+

E(m) = 0, lim
m→∞

E(m) = 0.

ii) Positivity of E(m)

Since (1− λ), D,m, s(m), ϕ(u(m)) are all strictly positive on (0,∞), we have

E(m) =
(1− λ)D

ms(m)
ϕ
(
u(m)

)
> 0 ∀m > 0.
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iii) Existence and Uniqueness of the Peak

Define the log-elasticity

L(m) = lnE(m) = ln
[
(1− λ)D

]
− lnm− ln s(m) + lnϕ

(
u(m)

)
.

Differentiate term by term:

dL

dm
= − 1

m
− s′(m)

s(m)
+

ϕ′(u(m))

ϕ(u(m))
u′(m).

Using s′(m)/s(m) = E(m)/m, ϕ′(u) = −uϕ(u), and u′(m) = D/m2, we obtain

dL

dm
= − 1

m
− E(m)

m
− u(m)

D

m2
=

−1− E(m)− D
m
u(m)

m
.

Since m > 0, the sign of E ′(m) coincides with the sign of

f(m) = −1− E(m)− D

m
u(m).

iiia) Endpoint Signs of f(m)

• As m → 0+, u(m) → −∞ so −D
m
u(m) → +∞, and −1 − E(m) remains

bounded. Therefore f(m) → +∞ and E ′(m) > 0 for small m.

• As m → ∞, u(m) → A, E(m) → 0, so f(m) → −1 < 0 and E ′(m) < 0 for

large m.

iiib) Monotonicity of f(m)

A straightforward (albeit tedious) calculation shows

f ′(m) < 0 ∀m > 0.

Hence f is strictly decreasing from +∞ to −1, crossing zero exactly once. Denote
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this unique root by m∗. Then

E ′(m) > 0 (m < m∗), E ′(m) = 0 (m = m∗), E ′(m) < 0 (m > m∗).

Combining the above:

1. E(0+) = E(∞) = 0.

2. E(m) > 0 on (0,∞).

3. E ′(m) changes sign exactly once from + to − at m∗.

Therefore E(m) increases from 0 to a unique maximum E(m∗) and then decreases

back to 0, i.e. it is hump-shaped for all admissible parameter values λ,D,A.

K Others

The decomposition analysis shows that both the endogenous job destruction and the

time-varying matching efficiency are critical for the Beveridge curve shifts. To under-

stand their roles further, we analyze how the endogenous job separation comoves with

the exogenous matching efficiencies. Figure K.15 is the scatter plots of the endoge-

nous job separation rate (x-axis) and the matching efficiency (y-axis) for our baseline

model (panel (a)) and the model without endogenous job destruction (panel (b)).

The figure shows that the job destruction rate and matching efficiency significantly

positively comove over the business cycle in our baseline model. The correlation is

0.982. This indicates that when the matching efficiency is higher, firms expect a

greater chance of re-matching, leading to a higher job destruction rate. On the other

hand, the job separation rate does not comove with the matching efficiency in the

model with the exogenous separation (panel (b)) by construction.

To analyze the effect of this comovement on the Beveridge curve shift, we feed this

comovement between the job separation rate and the matching efficiency exogenously
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Figure K.15: Comovement between the job separation and the matching efficiency
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(a) Endogenous job destruction
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(b) Exogenous job destruction

to the exogenous job destruction model. Specifically, we first compute the expec-

tation of the job separation rate conditional on each matching efficiency level and

use this conditional expectation exogenously hard-wired to the matching efficiency

fluctuations. Figure K.16 shows the Beveridge curve implied by the model with such

exogenous co-movement. Now, the equilibrium displays shifts in the Beveridge curve

similar to the baseline model despite the exogenous job destruction. This exercise

shows that the comovement of job separation rate and the matching efficiency is the

key channel for the shifts in the Beveridge curve.

Compared to the exogenous job destruction model (panel (b)), the baseline model’s

negative association displays greater convexity when the unemployment rate is lower.

Table K.6 quantifies this greater convexity with a segmented regression showing the

stronger non-linearity in the baseline model. That is, a marginal increase in the

vacancy posting rate is likely to be associated with a smaller decline in the un-

employment rate when the unemployment rate is lower. This nonlinearity in the

baseline model is consistent with the observed pattern in the data. The comparison

between the two Beveridge curves indicates that the empirically observed nonlinear-

ity is captured in the equilibrium only when the model incorporates endogenous job

destruction.
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Table K.6: Spline fitting of the Beveridge curves

VacancyRate

(1) (2)

UnemploymentRate −0.151∗∗∗ −0.142∗∗∗

(0.004) (0.009)

EndogenousBreak 0.038∗∗∗

(0.002)

UnemploymentRate:EndogenousBreak −1.185∗∗∗

(0.081)

ExogenousBreak 0.015∗∗∗

(0.001)

UnemploymentRate:ExogenousBreak −0.158∗∗∗

(0.011)

Constant 0.037∗∗∗ 0.049∗∗∗

(0.000) (0.001)

Observations 15,500 15,500
R2 0.140 0.240
Adjusted R2 0.140 0.240
Residual Std. Error (df = 15496) 0.009 0.011
F Statistic (df = 3; 15496) 841.450∗∗∗ 1,631.049∗∗∗

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Figure K.16: Beveridge curve from exogenous comovement between the job separation
and the matching efficiency
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The segmented regressions for the Beveridge curve show that the Beveridge curve

with endogenous separations has a stronger kink. Breaking points are chosen to

maximiing the likelihood of the estimation and are at 3.25 % unemployment for en-

dogenous job separations and 9.64 % for the Beveridge curve with exogenous job

separations. The breaking point reflects the estimated steeper segment of the Bev-

eridge curve and in this segment the coefficient on the unemployment rate are -1.34

and -0.30 respectively. For the flatter segments coefficients are similar at -0.151 and

-0.142 respectively.

Figure K.17: Matching efficiency and the counter-cyclical unemployment benefit
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(a) ME-dependent shock responses
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(b) Counter-cyclical b during high ME

Panel (a) of Figure K.17 plots the unemployment response paths for Covid-19
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recession (solid line) and the Great Recession (dashed line). The surrounding colored

area indicates the 95% confidence interval. Despite the same exogenous state paths,

the endogenous states display sharply distinct paths between the Covid-19 recession

and the Great Recession. In particular, the high matching efficiency of the Covid-19,

which is the key difference between the two conditioning states leads to a significantly

greater response for around 10 months.

Panel (b) displays the global response paths for baseline (solid) and the baseline

with the counter-cyclical unemployment benefit during the Covid-19 period. The

counter-cyclical unemployment benefit significantly increases the responsiveness of

the unemployment, which makes the unemployment rate 12 month after the initial

shock reach around 14%, as observed in the data.
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