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A Sequential formulation of a canonical RBC

A representative household with temporal log utility is considered. Given initial condition

(a0, A0), the household maximizes life-time utility under stochastic aggregate TFP At, which

is subject to a budget constraint as elaborated on below:

max
{cτ (A(τ)),aτ+1(A(τ))}∞τ=0

E0

∞∑
τ=0

βτ log(cτ (A
(τ))) (1)

s.t. cτ (A
(τ)) + aτ+1(A

(τ)) = aτ (A
(τ−1))(1 + r(A(τ))) + w(A(τ)), for ∀τ,∀At (2)

aτ+1(A
(τ)) ≥ −a, for ∀τ (3)

where superscript τ inside a bracket denotes history of a variable up to period τ ; −a

is the natural borrowing limit to preempt Ponzi scheme. Labor supply is exogenously

fixed at unity. I consider the following competitive factor prices given CRS Cobb-Douglas

production function:

r(A(τ)) = Atα(K(A(τ)))(α−1) − δ (4)

w(A(τ)) = At(1− α)(K(A(τ)))α, (5)

K is capital stock, that satisfies K(A(τ)) = a(A(τ)) in equilibrium. With the regularity con-

ditions given in Stokey et al. (1989), this sequential formulation yields the same optimality

conditions as the recursive form in the main text.

B Individual conditional saddles in Aiyagari (1994)

I define individual-level conditional saddle path in the heterogeneous-household economy

without aggregate uncertainty (A = A′ = 1). The conditional saddle is defined for the

SRCE as in Aiyagari (1994).

Definition 1 (Individual reachable equilibrium set).

Fix a stationary RCE of the Aiyagari (1994) economy, which delivers an individual asset

law of motion

ga : R+ ×Z → R+,

where Z is a finite Markov set (e.g. Z = {u, e}) with transition matrix Π. Fix an initial

condition (a0, z0) ∈ R+ ×Z.

The individual reachable equilibrium set Rind(a0, z0) ⊆ R+ × Z is the smallest set
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containing (a0, z0) that is closed under all feasible one-step equilibrium transitions:

(a, z) ∈ Rind(a0, z0) and Πzz′ > 0 =⇒
(
ga(a, z

′), z′
)
∈ Rind(a0, z0).

Definition 2 (Individual conditional saddle).

Given (a0, z0) and Rind(a0, z0), for each z ∈ Z define the z-slice

Rind
z (a0, z0) := {a ∈ R+ : (a, z) ∈ Rind(a0, z0)}.

The individual conditional saddle under idiosyncratic state z is the largest subset Mind
z (a0, z0) ⊆

Rind
z (a0, z0) that is forward invariant under the frozen-z mapping:

a ∈ Mind
z (a0, z0) =⇒ ga(a, z) ∈ Mind

z (a0, z0).

Equivalently,

Mind
z (a0, z0) :=

⋃{
S ⊆ Rind

z (a0, z0) : ga(S, z) ⊆ S
}
.

Figure B.1: Individual conditional saddle paths in the stationary RCE
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Notes: The figure illustrates the individual conditional saddle paths for z = e and z = u in Aiyagari (1994).

Figure B.1 illustrates individual-level conditional saddle paths in Aiyagari (1994). Be-

cause of the borrowing constraint, the conditional steady state associated with the unem-

ployment state z = u is not attained. Under standard calibrations, this generates a positive

mass of agents at the borrowing limit. Analogous to the aggregate-level case, heterogeneity

in the slopes of individual conditional saddle paths implies differential responses of individ-

ual consumption to idiosyncratic shocks.
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C Proofs for the theoretical results

Proposition 2 (Aggregate uncertainty and the conditional steady states).

The following inequalities hold:

Kcs
B < Kpf

B < Kpf
G < Kcs

G , ccsB < cpfB < cpfG < ccsG .

Proof.

Let R(A,K) := 1− δ+ αAKα−1 denote the gross return on capital and let the K-nullcline

(feasibility locus) be

c(A,K) = AKα − δK.

The PF steady states solve the Euler equations under absorbing beliefs,

1 = βR(B,Kpf
B ), 1 = βR(G,Kpf

G ).

Since R(A,K) is strictly increasing in A and strictly decreasing in K (because α− 1 < 0),

it follows immediately that Kpf
B < Kpf

G .

Next define the frozen-regime CS Euler residuals evaluated on the K-nullcline by

FB(K) := β
[
πBBR(B,K) + πBG

c(B,K)

c(G,K)
R(G,K)

]
− 1,

FG(K) := β
[
πGGR(G,K) + πGB

c(G,K)

c(B,K)
R(B,K)

]
− 1.

By construction, the conditional steady states satisfy FB(K
cs
B ) = 0 and FG(K

cs
G ) = 0.

Step 1: show Kcs
B < Kpf

B . Evaluate FB at Kpf
B . Using 1 = βR(B,Kpf

B ) and πBB = 1−πBG,

FB(K
pf
B ) = β

[
(1− πBG)R(B,Kpf

B ) + πBG
c(B,Kpf

B )

c(G,Kpf
B )

R(G,Kpf
B )

]
− 1

= πBG

[
β
c(B,Kpf

B )

c(G,Kpf
B )

R(G,Kpf
B )− 1

]
.

Thus FB(K
pf
B ) < 0 is equivalent to

β
c(B,Kpf

B )

c(G,Kpf
B )

R(G,Kpf
B ) < 1 ⇐⇒

R(G,Kpf
B )

R(B,Kpf
B )

<
c(G,Kpf

B )

c(B,Kpf
B )

,

where we used βR(B,Kpf
B ) = 1 to divide both sides by R(B,Kpf

B ).

We now prove this strict inequality for any K with c(B,K), c(G,K) > 0. Write x :=
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αKα−1 > 0 and y := Kα > 0. Then

R(G,K)

R(B,K)
=

1− δ +Gx

1− δ +Bx
,

c(G,K)

c(B,K)
=

Gy − δK

By − δK
.

Since 1− δ > 0, we have the strict bound

1− δ +Gx

1− δ +Bx
<

Gx

Bx
=

G

B
.

Since δK > 0 and Gy > By, subtracting the same positive term from numerator and

denominator enlarges the ratio, yielding

Gy − δK

By − δK
>

Gy

By
=

G

B
.

Combining the two displays gives

R(G,K)

R(B,K)
<

G

B
<

c(G,K)

c(B,K)
,

and in particular the desired inequality holds at K = Kpf
B . Therefore FB(K

pf
B ) < 0.

Finally, note that FB is strictly decreasing in K on the relevant region because both

R(B,K) and R(G,K) are strictly decreasing in K and c(B,K)/c(G,K) is also decreasing

in K along the feasibility locus.2 Hence, since FB(K
cs
B ) = 0 and FB(K

pf
B ) < 0, we must

have Kcs
B < Kpf

B .

Step 2: show Kcs
G > Kpf

G . Similarly, evaluate FG at Kpf
G . Using 1 = βR(G,Kpf

G ) and

πGG = 1− πGB,

FG(K
pf
G ) = β

[
(1− πGB)R(G,Kpf

G ) + πGB
c(G,Kpf

G )

c(B,Kpf
G )

R(B,Kpf
G )

]
− 1

= πGB

[
β
c(G,Kpf

G )

c(B,Kpf
G )

R(B,Kpf
G )− 1

]
.

Thus FG(K
pf
G ) > 0 is equivalent to

β
c(G,Kpf

G )

c(B,Kpf
G )

R(B,Kpf
G ) > 1 ⇐⇒

R(B,Kpf
G )

R(G,Kpf
G )

>
c(B,Kpf

G )

c(G,Kpf
G )

.

But the argument above applied with (B,G) swapped gives, for any K with positive con-

2This monotonicity is standard and can be verified by differentiation; it is also visually apparent in the
(K,C) phase diagram.
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sumption,
R(B,K)

R(G,K)
>

B

G
>

c(B,K)

c(G,K)
.

Hence FG(K
pf
G ) > 0. Since FG is strictly decreasing in K and FG(K

cs
G ) = 0, we conclude

Kcs
G > Kpf

G .

Step 3: conclude the ordering and translate to consumption. We have shown Kcs
B < Kpf

B

and Kpf
G < Kcs

G , and already Kpf
B < Kpf

G , hence

Kcs
B < Kpf

B < Kpf
G < Kcs

G .

Finally, along the K-nullcline c(A,K) = AKα − δK is strictly increasing in A and (on the

relevant region) increasing in K, so the same ordering carries over to consumption:

ccsB < cpfB < cpfG < ccsG .

■
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