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A Sequential formulation of a canonical RBC

A representative household with temporal log utility is considered. Given initial condition
(ao, Ap), the household maximizes life-time utility under stochastic aggregate TFP A;, which

is subject to a budget constraint as elaborated on below:

OZ/B log(c, (A1) (1)

max
{er (A ar41( (T))}
st er(AT) + a7+1(A( >) = a; (AT A+ r(AD)) + w(AD),  for Vr,VA;,  (2)
ar1 (AT > —a,  for vr (3)

where superscript 7 inside a bracket denotes history of a variable up to period 7; —a
is the natural borrowing limit to preempt Ponzi scheme. Labor supply is exogenously
fixed at unity. I consider the following competitive factor prices given CRS Cobb-Douglas

production function:

r(A7)) = Aa(K(AD) D — 5 (4)
w(A) = A(1 - @) (K (A7), ()

K is capital stock, that satisfies K (A() = a(A() in equilibrium. With the regularity con-
ditions given in Stokey et al. (1989), this sequential formulation yields the same optimality

conditions as the recursive form in the main text.

B Individual conditional saddles in Aiyagari (1994)

I define individual-level conditional saddle path in the heterogeneous-household economy
without aggregate uncertainty (A = A’ = 1). The conditional saddle is defined for the
SRCE as in Aiyagari (1994).

Definition 1 (Individual reachable equilibrium set).
Fiz a stationary RCE of the Aiyagari (1994) economy, which delivers an individual asset
law of motion

go Ry X Z — Ry,

where Z is a finite Markov set (e.g. Z = {u,e}) with transition matriz II. Fiz an initial
condition (ag, z0) € Ry x Z.
The individual reachable equilibrium set R"™(ag, 29) € Ry x Z is the smallest set



containing (ao, 20) that is closed under all feasible one-step equilibrium transitions:
(a,2) € R™Y(ag,20) and M, >0 = (ga(a,?’), 2') € R™(ag, 20).

Definition 2 (Individual conditional saddle).
Given (ag, z0) and R™(ag, 2), for each z € Z define the z-slice

R (ag, 20) := {a € Ry : (a,2) € R™(ag, 20)}.

The individual conditional saddle under idiosyncratic state z is the largest subset M (ag, zg) C

Rind(ag, z0) that is forward invariant under the frozen-z mapping:
a€ MM(ag,20) = gala,z) € MP(a, 20).

Equivalently,
M a, 20) i= [ J{S € R0, 20) : ga(S,2) € S}

Figure B.1: Individual conditional saddle paths in the stationary RCE
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Notes: The figure illustrates the individual conditional saddle paths for z = e and z = u in Aiyagari (1994).

Figure B.1 illustrates individual-level conditional saddle paths in Aiyagari (1994). Be-
cause of the borrowing constraint, the conditional steady state associated with the unem-
ployment state z = u is not attained. Under standard calibrations, this generates a positive
mass of agents at the borrowing limit. Analogous to the aggregate-level case, heterogeneity
in the slopes of individual conditional saddle paths implies differential responses of individ-

ual consumption to idiosyncratic shocks.



C Proofs for the theoretical results

Proposition 2 (Aggregate uncertainty and the conditional steady states).

The following inequalities hold:
Ky < KV < KV < Kg &< M o< B o<
B B G ’ B B G G-

Proof.
Let R(A,K) :=1—§+ aAK* ! denote the gross return on capital and let the K-nullcline
(feasibility locus) be

¢(A,K)=AK" — §K.

The PF steady states solve the Euler equations under absorbing beliefs,
1=BR(B,KY),  1=BR(G,KE).

Since R(A, K) is strictly increasing in A and strictly decreasing in K (because o — 1 < 0),
it follows immediately that K %f < Kgf )

Next define the frozen-regime CS Euler residuals evaluated on the K-nullcline by

¢(B, K)
¢(G,K)

Fp(K) = ﬁ[wBBR(B,K) + Tpe R(G, K)} —1,

Fo(K) = ﬁ[WGGR(Ga K) +maB G, K)

(5K R(B,K)} ~1

By construction, the conditional steady states satisfy Fp(K§) =0 and Fg(K§') = 0.

Step 1: show K% < K%f. Evaluate Fz at Kgf. Using 1 = BR(B,K%f) and m1gp = 1 —7Rq,

pf pf C(BJ(gf) pf
Fp(K¥) = 5[(1 — mpg)R(B, K¥) + WBG*C(G pf)R(G, K| -1
 Kg
(B, K%) ;
=7 —— P2 R(G,KY) —1].
BG[IBC(G’ %f) ( B)

Thus Fg(K%') < 0 is equivalent to

B, K? R(G,K? G,KY
BC( ) ff)R(G,K%f) <1 — ( ) gf) < C( ) ff)’
(G, K¥) R(B,KY) = ¢(B,KY)

where we used BR(B, K%) = 1 to divide both sides by R(B, K%).
We now prove this strict inequality for any K with ¢(B, K),c¢(G,K) > 0. Write z :=



aK* 1 >0and y:= K> 0. Then

R(G,K) 1-6+Gua o(G,K) Gy-0K
R(B,K) 1-6+ Bx’ c¢(B,K) By-J0K’

Since 1 — § > 0, we have the strict bound

1-6+Gzx Gz G

1-3+Br "Bz B

Since K > 0 and Gy > By, subtracting the same positive term from numerator and

denominator enlarges the ratio, yielding

Gy—6K Gy G

— > = = .
By—0K By B
Combining the two displays gives

R(G, K)
R(B,K)

c¢(G,K)
¢(B,K)’

<g<
B

and in particular the desired inequality holds at K = K %f . Therefore F' B(K%f ) < 0.

Finally, note that Fp is strictly decreasing in K on the relevant region because both
R(B, K) and R(G, K) are strictly decreasing in K and ¢(B, K)/c(G, K) is also decreasing
in K along the feasibility locus.” Hence, since Fp(K%) = 0 and FB(K%f) < 0, we must
have K& < K ]’;,f .

Step 2: show K > Kgf. Similarly, evaluate Fg at Kgf. Using 1 = ﬁR(G,Kgf) and

Taq =1 — 7B,

(G, KY)

Fo(Kg)) = B|(1 —mon) (G KE) + "o Kpf)R(B,Kgf) 1
B
(G, KY) ;
= —— S 2R(B,K?)—1].
o [BC(BvKgf) (B, K2

Thus Fg (K, gf ) > 0 is equivalent to

G, K R(B, K/ B, K?/
ﬁC( ) Gf) R(B,Kgf) >1 — ( ) Gf) > C( ) Gf)
o(B,K{) R(G,K{) (G, KY)

But the argument above applied with (B, G) swapped gives, for any K with positive con-

2This monotonicity is standard and can be verified by differentiation; it is also visually apparent in the
(K, C) phase diagram.



sumption,

R(B,K) B ¢(B,K)

RG.EK) G~ «G.EK)

Hence Fg(Kgf) > 0. Since Fg is strictly decreasing in K and Fg(K§') = 0, we conclude
K& > K.

Step 3: conclude the ordering and translate to consumption. We have shown K§ < Kgf
and K gf < K&, and already K %f <K gf , hence

Kg < K < kY < Kg.

Finally, along the K-nullcline ¢(A, K) = AK® — §K is strictly increasing in A and (on the

relevant region) increasing in K, so the same ordering carries over to consumption:

< < <.
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