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Abstract

This paper extends deterministic saddle-path analysis to stochastic environ-
ments by introducing conditional saddle paths: equilibrium manifolds under
frozen exogenous states. This concept yields a global geometric representation
of stochastic equilibrium dynamics, in which equilibrium fluctuations decom-
pose into movements along (endogenous propagation) and across (exogenous
state transitions) conditional saddle paths. The framework delivers two theo-
retical results. First, state-dependent impulse responses arise from differences
in the slopes of conditional saddle paths. Second, if an aggregate equilibrium
variable varies strictly monotonically along conditional saddle paths, it uniquely
indexes equilibrium states and thus provides an exact one-dimensional sufficient
statistic. Applying this result, I prove that aggregate capital is a sufficient
statistic in a canonical heterogeneous-household model (Krusell and Smith,
1998).
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1 Introduction

Understanding equilibrium dynamics in models with aggregate uncertainty remains a
central challenge in macroeconomics. Unlike deterministic models, where saddle-path
diagrams provide immediate geometric intuition, stochastic equilibrium models lack
comparable geometric frameworks. This makes it difficult to develop intuition about
how economies respond to shocks, how different states interact, and why certain com-
putational methods work. The challenge becomes particularly acute in heterogeneous-
agent models, where the natural state variable is an infinite-dimensional wealth dis-
tribution — yet computational work routinely achieves dimension reduction to low-
dimensional aggregates. Can we extend geometric saddle-path analysis to stochastic
environments? What does such a framework reveal about equilibrium dynamics,
state-dependent responses, and the success of computational approximations?

This paper makes two contributions. First, it extends the saddle-path analysis
of equilibrium dynamics from deterministic models to stochastic environments by
introducing the notion of conditional saddle path: equilibrium trajectories of the
regime-frozen economy (holding the aggregate state fixed at a level). This geometric
object decomposes business-cycle fluctuations into movements along a conditional
saddle (endogenous propagation) and across conditional saddles (transitions when
the exogenous state changes), providing a unified framework for analyzing state-
dependent equilibrium dynamics. The framework enables visualization of generalized
impulse responses and nonlinear transition dynamics in phase diagrams, analogous to
how saddle-path diagrams illuminate deterministic models. Based on this geometric
framework, I establish that state-dependent shock responses arise essentially from
differences in the local slopes along the conditional saddle paths.

Second, it provides a general dimension-reduction theorem on these manifolds. If
an aggregate equilibrium variable is strictly monotone and convergent along the con-
ditional saddle, then it is injective on the invariant equilibrium set and hence uniquely
indexes all equilibrium allocations and prices. As a consequence, the equilibrium can
be represented exactly — not merely approximately — with a one-dimensional suf-
ficient statistic. Applying this theoretical result, I establish that aggregate capital
is a sufficient statistic for canonical heterogeneous-agent models (Krusell and Smith,
1998). This provides a geometric foundation for the empirical success of scalar ap-

proximations and offers verifiable conditions based on primitive assumptions rather



than numerical iteration.

These results extend beyond the canonical one-asset setting. In heterogeneous-
agent models with multiple endogenous state variables, such as risky and riskless
assets, liquid and illiquid assets, domestic and foreign bonds, the same logic applies
(Krusell and Smith, 1997; Mendoza, 2010; Khan and Thomas, 2013; Kaplan and
Violante, 2014; Berger and Vavra, 2015; Kaplan et al., 2018): whenever a monotone-
convergent aggregate coordinate exists along conditional saddle paths, equilibrium
dynamics remain exactly traceable by a scalar index.

Conditional saddle paths are equilibrium manifolds defined under frozen exoge-
nous aggregate states: they describe counterfactual equilibrium continuations — how
the economy would evolve if the aggregate state were held fixed at a given value
— computed under the same decision rules that govern the stochastic equilibrium
with regime switching. These counterfactual paths are economically meaningful be-
cause equilibrium decisions internalize the possibility of future regime changes, and
the frozen-regime objects formalize the corresponding equilibrium “thought experi-
ments.”

Conditional saddle paths are closely connected to the random dynamical systems
(RDS) notion of invariant manifolds for dynamics under exogenous forcing (Arnold,
1998). In the present setting, the forcing is the aggregate Markov state, and a recur-
sive competitive equilibrium (RCE) implies a time-homogeneous endogenous law of
motion; conditional saddle paths are the invariant manifolds of the resulting frozen-
regime equilibrium maps. Both perspectives organize stochastic dynamics using in-
variant geometric objects rather than local linearizations. The distinction in this
paper is therefore not the mathematics of invariance, but the equilibrium discipline:
the invariant-manifold structure is pinned down by optimality, market clearing, and
equilibrium consistency, and it is precisely what makes global transition functions
and impulse responses well defined and comparable across aggregate states within

the recursive equilibrium framework.

Related literature This paper contributes to three strands of literature in macroe-
conomics. The first is the literature studying global equilibrium dynamics and so-
lution methods under aggregate uncertainty. The challenge of characterizing equi-
librium dynamics in models with aggregate shocks has motivated extensive method-
ological development. Marcet (1988), Den Haan and Marcet (1990) and Krusell and



Smith (1998) pioneered the use of bounded rationality approximations. In particular,
Krusell and Smith (1998) discovered that a simple linear forecasting rule in aggregate
capital achieves remarkable accuracy (R? > 0.9999) despite the infinite-dimensional
state space. Thereafter, the literature has dramatically developed to sharpen the
accuracy and improve the computational efficiency by incorporating moment-based
approximations, exact aggregation, functional approximations, sequence-space ap-
proaches, and machine/deep learning (Den Haan, 1996, 1997; Reiter, 2001; Algan
et al., 2008, 2010; Den Haan and Rendahl, 2010; Reiter, 2010; Ahn et al., 2018; Bop-
part et al., 2018; Elenev et al., 2021; Auclert et al., 2021; Cao et al., 2023; Azinovic
et al., 2022; Ferndndez-Villaverde et al., 2023; Han et al., 2025; Payne et al., 2025).

This paper differs from these computational contributions by providing geomet-
ric foundations for why dimension reduction works. Rather than developing new
algorithms, I introduce conditional saddle paths as an geometric framework for un-
derstanding equilibrium dynamics — analogous to how saddle-path diagrams provide
intuition in deterministic models. The framework reveals that aggregate capital’s suf-
ficiency in a canonical heterogeneous-household model follows from geometric prop-
erties (nullcline invariance and monotonicity) rather than numerical happenstance.

The exact sufficiency result also has computational implications. Lee (2025)
develops a repeated transition method that constructs conditional expectations for
individual-level problems by identifying periods in simulations, where aggregate states
are similar, enabling reuse of computed transitions across these similar states. The
method requires a metric for determining when aggregate states are “close enough”
to pool. My sufficiency result establishes that aggregate capital distance provides
a theoretically justified metric — agents’ problems are identical whenever capital
stocks coincide, regardless of distributional differences. This validates distance-based
pooling strategies and enables efficient implementation without requiring explicit dis-
tributional tracking.

This paper builds on the traditional use of geometric methods to analyze economic
dynamics in deterministic environments. Phase-diagram analyses of the Solow—Swan
(Solow, 1956; Swan, 1956) and Ramsey—Cass—Koopmans (Ramsey, 1928; Cass, 1965;
Koopmans, 1963) growth models provide foundational intuition about convergence
and stability. I extend this geometric approach to stochastic environments by intro-
ducing conditional saddle paths. This framework offers a geometric interpretation

of stochastic equilibrium dynamics, including nonlinear and state-dependent impulse



responses. In particular, it provides a useful visual tool for understanding how mi-
crofounded frictions generate state-dependent dynamics, as documented in the recent
literature (Kaplan and Violante, 2014; Vavra, 2014; Berger and Vavra, 2015; Basu
and Bundick, 2017; Bloom et al., 2018; Kaplan et al., 2018; Petrosky-Nadeau et al.,
2018; Baley and Blanco, 2019; Pizzinelli et al., 2020; Berger et al., 2021; Melcangi,
2024; Winberry, 2021; Lee, 2026).

Finally, in mathematics, the literature on random dynamical systems provides
foundational tools for geometric analyses of stochastic dynamic processes. However,
its focus has not been on history-invariant saddle paths of the type that arise in
recursive competitive equilibrium (Arnold, 1998). For example, Yannacopoulos (2011)
introduces the notion of stochastic saddle paths, which are conceptually distinct from
conditional saddle paths in that they vary with the realized history of shocks.!

By contrast, conditional saddle paths furnish economists with a geometric rep-
resentation of stochastic equilibrium dynamics that is directly analogous to the role
of phase diagrams in deterministic models. While this framework relies on standard
regularity conditions to ensure well-defined and bounded equilibrium paths (Kami-
higashi, 2003, 2005), the emphasis here is not on establishing existence results, but
rather on providing geometric tools for understanding and analyzing stochastic equi-

librium dynamics.

2 Conditional saddle path

2.1 Definitions and assumptions

I consider a generic dynamic stochastic model where the corresponding recursive
competitive equilibrium (RCE) is characterized by the following aggregate state S

and the endogenous and exogenous law of motions (1 g0, L ezo):
S =12, 4] (1)

where @ is the endogenous aggregate state variable, and A is the exogenous aggre-
gate state variable. The latter admits a multivariate vector that follows a stochastic

process. I assume the exogenous aggregate law of motion I,,, is a Markov chain.

1Stochastic saddle paths depend on the specific sequence of past realizations, whereas conditional
saddle paths are invariant to history.



For simplicity in the illustration, I assume I, is a two-state Markov chain where
A € {B,G}, and I.,,(A'|A) > 0 for VA, A.
As a pre-step to define the conditional saddle path, I first introduce the reachable

equilibrium set from an initial aggregate state.

Definition 1 (Reachable equilibrium set).

Let (&4, A;) denote the endogenous and exogenous aggregate state under a stationary
RCE, where @111 = Lenao(Py, Ay) and Ayyq follows the Markov matriz I1. Fix an
initial condition (Pg, Ag). The reachable equilibrium set R(Pg, Ag) C X x {B,G} is
the smallest set containing (Pg, Ag) such that for every (P, A) € R(Po, Ag) and every
A" € {B,G} with [Tya >0,

(Lenao(®, A), A') € R(Po, Ao).

The reachable equilibrium set R(®Pg, Ag) is best viewed as an extended equilibrium
history. Starting from the initial state (@g, Ag), it contains not only the states visited
along the realized sequence of aggregate regimes, but also all counterfactual contin-
uations induced by alternative regime realizations permitted by the Markov matrix
II. Formally, R(Py, Ag) collects every equilibrium state (@, A) that can arise from
(@o, Ap) under some feasible history of aggregate regimes, evaluated under the same
stationary RCE decision rules. This construction is useful because it lets us define
geometric equilibrium objects (conditional saddle paths, impulse responses, transition
paths) without tying them to one particular realized history, even though a realized

path typically visits each distribution ¢ at most once.

Definition 2 (Conditional saddle path).
Given (Dy, Ag), for each A € {B,G} define the A-slice of R as

Ra(®o, Ag) = {® € X : (¥, A) € R(%o, Ag)}.

The conditional saddle path under regime A is the largest subset M (Po, Ag) C

Ra(Po, Ag) that is forward invariant under the frozen-regime mapping:

D c MA(on,Ao) — Fendo(gpaA) c MA(@(),A()).



Equivalently,
Ma(®o, Ao) = J {3 C Ru(Po, Ag) : Tionao(S, A) C 5}.

Definition 2 extracts from R(Pg, Ag) the forward-invariant subset relevant for
frozen-regime dynamics. Intuitively, fixing A turns the stochastic economy into a
deterministic dynamical system on the distribution space: given &, the RCE law of
motion produces the next endogenous state [.,q0(®, A). The conditional saddle path
M 4(Dy, Ap) is the maximal set of equilibrium states that is closed under this frozen-
regime evolution. As in deterministic saddle-path analysis, restricting attention to
M 4 isolates the economically meaningful equilibrium evolution toward the long-run
behavior under regime A.

Based on the conditional saddle path, conditional steady state can be defined as

follows:

Definition 3 (Conditional steady state).
Given (®g, Ag), a conditional steady state under regime A is any &5 € Ma(Po, Ap)
satisfying

Finao @5, A) = 5.

Assumption 1 (Geometric regularity of conditional saddle paths).
Fix (o, Ao). For each A € {B,G}, the conditional saddle My := Ma(Py, Ap)

satisfies:
(i) (Uniqueness) There exists a unique PG € My with Lengo(P%, A) = OF.
(ii) (Stability) T, (D, A) — & for all & € M 4.

(iii) (Single-valued) There exists a homeomorphism ¥4 : (0,1] — My with 4(1) =
.

In Assumption 1 (iii), the index set (0, 1] is a labeling device: 14(1) = @5 fixes
a normalization, but &4 need not be a boundary point of My in any economic
projection (e.g. the curve may approach K(®%) from both sides).

Proehl (2025) establishes existence and uniqueness of recursive equilibrium in
heterogeneous-agent models under moderate parametric restrictions. Their result
concerns global uniqueness and does not depend on the initial condition. By con-

trast, Assumption 1 (i) in this paper is conditional on the initial state and therefore
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does not rule out the possibility of global multiplicity, as in Walsh and Young (2024).2
A theoretical characterization of the conditions under which Assumption 1 (i) holds is
beyond the scope of this paper; accordingly, the analysis proceeds under this assump-
tion. In addition, Assumption 1 (ii) restricts attention to non-explosive equilibrium
dynamics.

Assumption 1 (iii) is essentially necessary for the paper’s notion of global impulse
responses and transition functions to be well defined as single-valued equilibrium
objects. This is also the implicit convention in most of the macroeconomic literature:
impulse responses and transition dynamics are typically reported as functions of an
initial condition and a shock experiment, not as set-valued correspondences. If the
relevant frozen-regime invariant equilibrium set were thick in the distribution space,
(e.g. higher-dimensional, folded, or branching) then the same reported conditioning
information could be consistent with multiple distinct distributions that generate
different future allocations under the same experiment. In that case, a GIRF or
transition function would be inherently set-valued unless one conditions on the full
distribution and/or imposes an explicit equilibrium selection rule. Assumption 1 (iii)
rules out this pathology on the conditional saddle, thereby aligning the analysis with
the standard practice of treating global dynamics as uniquely defined paths.

With this geometric regularity in place, the conditional saddle admits a natural
notion of “position along the curve” toward the conditional steady state. Later, The-
orem 2 formalizes the key implication: if some aggregate equilibrium variable moves
strictly one-way along this curve, then it provides a valid coordinate for the entire
conditional saddle. In that case, knowing the scalar value is equivalent to know-
ing the full distributional state within the relevant equilibrium set, so the stochastic

equilibrium admits an exact one-dimensional representation on M 4.

2.2 Representative-agent economy: A canonical RBC

A representative household with temporal log utility is considered. Given initial con-
dition (ag, Ag), the household maximizes life-time utility under stochastic aggregate
TFP A;. I present the economy in recursive form and work with a recursive com-
petitive equilibrium. Under standard regularity conditions (including an appropriate

transversality condition), this recursive formulation is equivalent to the sequential

2Nevertheless, conditional on any given initial state, the equilibrium is assumed to be unique.



equilibrium; for completeness the sequential formulation is provided in Appendix A.

The recursive form of the household’s problem is as follows:

v(a; K, A) = max log(c) + BEv(a’; K', A") (2)
c+ad =a(l+rX))+wX) (3)
a>-—a (4)

K' =K, A), A ~ .,.,(AA), (5)

where v is the household’s value function; a is the wealth in the beginning of a
period; K is aggregate capital; A is aggregate TFP; I',,4, is the law of motion for K.
For illustrative purposes, I assume that TFP A follows a Markov-switching process
between the levels B and G, where G > B:

I, = BB TBG (6)
TGB TGG

I consider the following competitive factor prices given CRS Cobb-Douglas production

function:

r(K,A) = AaK* ' —§ (7)
w(K,A) =A(l —a)K*, (8)

where K is capital stock, which satisfies K = a in equilibrium. The recursive com-

petitive equilibrium (RCE, hereafter) is as follows:

Definition 4 (Recursive competitive equilibrium).

(c,d' v, w, Tongo) 8 a recursive competitive equilibrium if these functions
1. satisfy the individual optimality conditions
2. clear factor markets, resulting in the competitive prices.

3. satisfy the consistency:

d(K; K, A) = K' = Tp4,(K, A) (9)

In the model, the household ex-ante takes into account the aggregate uncertainty
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in its decision. The conditional saddle path is the sequence of outcomes implied by
such ex-ante decisions when the ex-post exogenous aggregate states are frozen at
A. Figure 1 illustrates two conditional saddle paths corresponding to the aggregate
productivity states B and G. The figure is based on a standard quarterly calibration
of the RBC model described above. The model is solved globally using the repeated
transition method of Lee (2025). Conditional saddle paths are then recovered by
fixing the aggregate productivity state for 2,000 periods and tracing the resulting
equilibrium trajectories of capital and consumption.?

The global dynamics of the recursive competitive equilibrium are fully character-
ized by movements along and across these conditional saddle paths. When aggregate
productivity remains constant, the economy evolves along the corresponding sad-
dle path. If the economy is initialized between the two conditional saddle paths and
A = @, capital converges strictly monotonically upward toward the conditional steady
state K&'; if A = B, capital converges strictly monotonically downward toward K.
If the initial state lies outside this region, the economy gradually transitions into it

while moving along the relevant saddle paths.

2.36 0.02
—Cond. saddle for A=B L
2.35 - - Cond. saddle for A=G _.-~_~0.018
% Cond. ss for A=B L. 3/
2.34 % Cond. ss for A=G e 0.016
233~ - 0.014
232+ 0.012 »
- 5
O 231 0.01 F
[}
23 0.008 O
2.29 - 0.006
228 0.004
2.27 ? 0.002
2.26 . . 0

274 276 278 28 282 284 286 288 29 202 294

K

Figure 1: Conditional saddle paths and steady states

Notes: The figure plots conditional saddle paths for A = B (solid) and A = G
(dashed) implied in the canonical RBC model under standard quarterly calibra-
tion. The histogram in the background plots the time-series distribution of the
aggregate capital stock.

3For each productivity state, the dynamics are computed twice: once starting from a sufficiently
low initial capital stock to obtain the upward-converging path, and once from a sufficiently high
initial capital stock to obtain the downward-converging path.
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Along the conditional saddle, the economy evolves according to the law of motion
I'.nqo for the endogenous state. In particular, the aggregate capital K strictly mono-
tonically converges to the conditional steady state — if K is lower than a conditional
steady state of the conditional saddle the economy is in, it increases, and vice versa for
the case of K higher than it. This strictly monotonically converging pre-determined
variable is the key to link the heterogeneous-agent model and the representative-agent
model as in the current setup — the variable becomes the sufficient statistic for the
heterogeneous-agent model.

When the level of TFP exogenously changes, the economy jumps from one saddle
to the other vertically — capital responds from the following period as it is a pre-
determined variable one period ahead. In this dynamics, the key force to move the
economy is the law of motion for the exogenous state I',,,. Combined together, both

law of motions generate bounded stochastic fluctuations in the economy.

Generalized transition function The conditional saddle path captures the en-
tire transitions across different endogenous (along the saddle) and exogenous states
(across the saddle), allowing generalized transition function (GTF) analysis (Lee,
2025), which encompasses generalized impulse response functions (Koop et al., 1996;
Andreasen et al., 2017). The economy’s response to a sequence of exogenous shocks is
not confined to local dynamics around the steady state, and its trajectory is sharply
traced in the phase diagram.

Figure 2 illustrates the equilibrium dynamics in consumption and capital stock in
phase diagram (panel (a)) and in time domain (panels (b) and (c)) for an arbitrary
subsample period (830 — 849, 20 quarters) in the equilibrium path. In period 830,
an exogenous negative TF'P shock hits leading to a downward jump in consumption
across the conditional saddle paths. Then, for four consecutive periods, consumption
and capital stock endogenously decline along the saddle. In period 835, an exogenous
positive TFP shock hits, shifting the economy to the other conditional saddle path,
followed by upward endogenous adjustments in consumption and capital. Compared
to the time-domain figures, phase diagram more concisely illustrates the equilibrium
dynamics in the economy within a figure. Moreover, it enables to immediately con-
sider the counter-factual scenarios from eyeballing off the realized exogenous paths.

As the information on all possible global equilibrium dynamics are contained in the

conditional saddle paths, generalized impulse response function (GIRF) can be also
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Figure 2: Equilibrium dynamics: saddle vs. time domain

Notes: The figure illustrates the stochastic equilibrium dynamics of consumption and capital stock
on the conditional saddle paths (panel (a)) and in the time domain (panels (b) and (¢)) implied by
a canonical RBC model under standard quarterly calibration. The sample period covers 20 quarters
from 830 to 849.

conveniently represented. For the GIRF illustration I replace the two-state Markov
chain with a continuous AR(1) process for A: A" = (1—p)u+pA+e, e~ N(0,0). In
this case, there is a continuum of frozen-A conditional saddles indexed by A, and the
GIRF path moves both along a given conditional saddle (endogenous propagation)
and across the foliation as A evolves.

Figure 3 illustrates the post-shock dynamics in the phase diagram following a
positive TFP shock, as aggregate productivity gradually reverts to its steady-state
level. Upon impact, consumption jumps upward, inducing a vertical shift of the

economy across conditional saddle paths. In subsequent periods, forces operating
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Figure 3: Generalized impulse response function (GIRF) at (K, Ao)

Notes: The figure illustrates the generalized impulse responses of consumption and
capital stock on the conditional saddle paths to a positive TFP shock.

both along and across these saddles jointly shape the post-shock dynamics, generating
a right-bending, bow-shaped trajectory. Consequently, the capital stock K exhibits
an inverted-U-shaped impulse response over time, while consumption ¢ displays a
downward-sloping response in the time domain.

Figure 4 presents the simulated impulse responses of consumption and capital
following a positive TFP shock, shown in the phase diagram (panel (a)) and in the
time domain (panels (b) and (c)) over periods 1-50. Consistent with the phase-
diagram intuition, the bow-shaped capital trajectory translates into a hump-shaped
impulse response in the time domain, as shown in panel (c¢). Consumption also
exhibits a hump-shaped response: initially, high-TFP conditional saddle paths push
consumption upward, but as TFP gradually decays and crosses a threshold level, the

direction of adjustment reverses, pulling consumption back down.
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Figure 4: Impulse responses to a positive TFP shock: saddle vs. time domain

Notes: The figure illustrates the impulse responses of consumption and capital stock on the con-
ditional saddle paths (panel (a)) and in the time domain (panels (b) and (c)). The sample period
covers 50 quarters from 1 to 50.

Comparison with the perfect-foresight saddles The household’s inter-temporal

optimality conditions evaluated at the conditional steady states are as follows:

Discounted return for B — B Discounted return for B — G

f cs\a—1 N ] C( CBS7G) - cs\a—1
,BFBB(l—f-aB(KB) —(S)—f-ﬂﬂ'BG T (1—|—04G(KB) —5):1 (10)

B
(K, B)\

Bree (1 + aG(KE)* — 6) +Brap (%) (1+aB(KS)* ' —§) =1 (11)

NS > NS G 7

Discounted reErn for G - G Discounted re?ljrn for G —+ B
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These equations pin down the conditional steady-state conditions for the aggregate

capital stocks K and K¢

1

K < a(rppB + mpaG) - )M (12)
1/8 — (1 6) (mpp + 7ac (9(B)) ™)

1

cs Oé(ﬂggG—i‘ﬂ'GBB)

Kg = = B
(1/5 — (1= 6) (mac + mas (9°(G)) ))

(13)

where ¢¢°(A), A € {B, G} are gross consumption growth rates when a regime change
happens in each conditional steady state.

In the perfect-foresight (PF) economy, agents believe regime switching is impossi-
ble and, consistent with this belief, the regime does not switch. In contrast, along the
conditional-saddle (CS) dynamics, the regime is held fixed ex post for the purpose
of tracing the conditional manifold, but agents still correctly anticipate that regime
switches are possible under I7. Thus PF and CS share the same feasibility account-
ing and the same K-nullcline under a given productivity level, yet generally differ
in their Euler-implied consumption dynamics and hence in their steady states and
saddle paths.

From the stationary condition for the capital stock (0K = I) and the national
accounting identity (Y = C'+ I), the conditional nullclines of aggregate capital K for
A € {B,G} are as follows:

Cgcnull — B(Kgcnull)a . 6K§cnull (14)
Cgcnull — G(Kgcnull)oc . 6Kgcnull (15)

Then, I consider a perfect-foresight dynamics where there is no uncertainty in the
economy and TFP A is fixed at either B or G. I denote allocations for this perfect-
foresight economy with superscript pf. Following a canonical neoclassical growth
model analysis, I derive the steady states for the perfect-foresight counterpart with
different TFP levels:

i =((gssms) o (tems) o (i) )
= ((s5=) e (i) o (i) ) o

15



Notably, two economies share the same capital (conditional) nullclines for each pro-

ductivity levels, as formalized in Proposition 1.

Proposition 1 (K-nullcline invariance over beliefs).
Conditional K-nullclines are identical between the RBC model with the aggregate

uncertainty and the perfect foresight counterpart.

Proof.
From the stationary condition K = I, equations (14) and (15) are immediate for

both models. Therefore, the conditional nullclines are the same. [ |

This property provides two important insights. First, the differences in the limit
behaviors of two economies (steady states) and the corresponding saddle paths are
crucially determined by the consumption dynamics — consumption nullclines.* In
Proposition 2, I compare the rankings between the baseline model and the perfect-
foresight model.

Second, both with and without aggregate uncertainty, the saddle-path dynam-
ics require the capital stock K to converge strictly monotonically to the (conditional)
steady state. Even when the baseline model is extended to a heterogeneous-household
environment, as in Section 4, the K-nullcline remains invariant, preserving the mono-
tonicity of K along conditional saddle paths. This property is crucial for establish-
ing the sufficiency of K in summarizing aggregate fluctuations in the heterogeneous-

household setting.

Proposition 2 (Aggregate uncertainty and the conditional steady states).

The following inequalities hold:

Ky < KY < KV < K&, & < B <<
Proof.
See Appendix C. [ |

Proposition 2 shows that the (conditional) steady state associated with low TFP

features lower capital stock and consumption under the aggregate uncertainty than

4Rigorously speaking, there is no consumption nullcline in the model with aggregate uncertainty.
The Euler equations at the conditional steady states play the same role as the consumption nullclines
without uncertainty.
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under perfect foresight; the one with high TFP features the opposite. Therefore,
conditional steady states of capital and consumption with aggregate uncertainty are
nested by the counterparts in the steady state with perfect foresight. These are fully

driven by rational expectations for future regime shifting under aggregate uncertainty.
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Figure 5: Conditional saddle path comparison: with and without uncertainty

Notes: The figure plots conditional saddle paths for A = B (solid) and A = G (dashed) and perfect-
foresight saddle paths for A = B (dash-dotted) and A = G (dotted) implied by a canonical RBC
model under standard quarterly calibration. The histogram in the background plots the time-series
distribution of the aggregate capital stock.

Figure 5 plots the conditional saddle paths for the model with aggregate uncer-
tainty and the perfect-foresight deterministic saddle paths. As shown in Proposition
2, conditional steady states for both capital stocks and consumption with perfect

foresight are nested by the ones with aggregate uncertainty.

Conditional boundary condition In the canonical deterministic neoclassical growth
model, the sequential formulation of competitive equilibrium requires a transversality
condition to pin down a unique equilibrium path.® The transversality condition guar-
antees bounded equilibrium paths and ensures the equivalence between the sequen-
tial and recursive formulations of equilibrium. In this paper, I define the stochastic

equilibrium recursive form without explicitly constructing the sequential counterpart,

5This condition is imposed at the aggregate level and should be distinguished from individual
no-Ponzi constraints.
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implicitly assuming a stochastic analogue of the transversality condition.
Given the notion of conditional saddle paths, a natural stochastic counterpart to

the deterministic boundary condition is conditional transversality:

tlim B (c;)Ky =0 for a TFP frozen at A € {B,G} (18)
—00

(along the conditional saddle for each A € {B,G}).

That is, conditional transversality requires lifetime utility to remain bounded along
each conditional steady-state path. This requirement is consistent with the internal
consistency of recursive competitive equilibrium, in which agents correctly anticipate
the long-run evolution of the economy conditional on the current aggregate state. If a
boundary condition were not conditional-saddle—specific — so that some realizations
of exogenous states generated explosive paths — the value function would fail to be
well defined along those paths.

The conditional transversality condition (18) is observationally equivalent to the
standard transversality conditions (Kamihigashi, 2003, 2005), which requires bound-
edness for all possible optimal paths — both select identical bounded recursive com-
petitive equilibria. The conditional formulation, however, makes explicit the role of
the boundary condition in ensuring bounded dynamics along each conditional saddle,

which is essential for the dimension-reduction results that follow.

Economies without conditional saddle paths A conditional saddle requires a
predetermined endogenous state: without one, the economy jumps each period to
the unique bounded allocation implied by the current exogenous state, leaving no

nontrivial “along-the-saddle” dynamics.

Remark 1 (Endogenous memorylessness implies degenerate conditional saddle paths).
Consider an RCE with state (9y, A;). Call the economy endogenously stateless if the
endogenous state is memoryless: &, = ¢(A;) for some function ¢, so that all equilib-
rium allocations depend on A; only. Then the economy is saddleless: the “conditional
steady state” under frozen A is simply ¢(A), and the invariant set is a singleton.
Conversely, a non-degenerate conditional saddle requires at least one predetermined

endogenous state.
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Example: Gali (2008) three-equation NK model. The textbook New Keyne-

sian model

ry = Eyxp — },(Zt —Eimi — 7)), (19)
i = DT+ Paly + Vi, (20)
7y = BEm + KT + Uy, (21)
under determinacy yields (xy,m,4:) = ¥sy for s, = (r],us, 1) and some matrix

¥. The equilibrium is endogenously stateless: freezing the exogenous state collapses
dynamics to an immediate jump to the conditional steady point. Fluctuations occur
entirely across conditional points, not along a saddle.

Models with predetermined states—capital, habits, interest-rate smoothing, or
distributional states in HANK-—are endogenously stateful, and conditional saddle

paths generically exist.

3 State dependence in a shock response

In this section, I analyze nonlinear shock responsiveness through the lens of condi-
tional saddle paths. In any stochastic dynamic model that admits conditional saddle
paths, a response of an aggregate variable to an exogenous shock is represented by
shifts across different conditional saddle paths. Then, if and only if all the condi-
tional saddle paths are parallel along the endogenous state, the response becomes

state-independent.

Theorem 1 (State-(in)dependence as a geometric restriction).
Fiz (®g, Ag) and let My, (Po, Ag) denote the conditional saddle path under the frozen
regime Ag. Let g(®, A) be an aggregate equilibrium object (e.g. consumption) defined
for (@, A) € My, (Do, Ag) x { Ao, A1}. Define the impact gap between regimes Ay and
Aq at state @ by

Ay(D; Ay, Ag) == g(D, Ay) — g(D, Ap).

Then the following are equivalent:

(i) (State-independent gap) A,(P; Ay, Ap) is constant on M, (Do, Ay), i.e. there
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exists ¢ € R such that

g(@, Al) — g(@,A()) =C Vo c MAQ(QS[)’AO)-

(i1) (Vertical-translation geometry) Viewed as subsets of X x R,
gAj = {(@79(@7 A])) P e MAO(QSOaAO)}ﬂ j € {07 1}7

satisfy Ga, = Ga, + (0,¢), i.e. Ga, is a constant vertical translation of Ga,.

Proof. (i) = (ii): if (P, A1) = g(P, Ag)+c for all @, then (D, g(P, A1)) = (P, g(P, Ao)+
¢) for all @, hence G4, = Ga, + (0,¢). (ii) = (i): if G4, = Ga, + (0, ¢), then for each
& we must have g(®, Ay) = g(P, Ag) + ¢, so the gap is constant. [ |

Sharp state independence may be a knife-edge property of an RCE. However,
Theorem 1 provides an insight regarding conditions under which state dependence
becomes amplified. In particular, when a conditional saddle path is more steeply
tilted with respect to the endogenous state, as illustrated in Figure 6, a shock respon-
siveness becomes state dependent. Such differential slopes may arise from various
real (Winberry, 2021; Lee, 2025), financial (Melcangi, 2024), labor market frictions
(Petrosky-Nadeau et al., 2018; Pizzinelli et al., 2020), and the scope of the rele-
vant shocks include TFP shocks and fiscal/monetary policy shocks (Tenreyro and
Thwaites, 2016; Lee, 2025). The sufficiency and the necessity of tilt in the state de-
pendence implies that models with such nature necessarily implies different slopes of

the conditional saddle paths.
An example: asymmetric adjustment cost As an example where state depen-

dence arises due to the tilt in the conditional saddle, I consider an extended RBC

model with asymmetric adjustment cost. Specifically, the representative household’s
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budget constraint is modified in the following way:

ct+d +C(d,a) = a(l+r(X)) +w(X) (22)
C(d,a) = g (a/ — “) a (23)
. Ly %f a >a (24)

1 ifa <a

where C is the wealth adjustment cost which indirectly reflects the frictional capital
market. The adjustment cost is asymmetric between positive and negative invest-
ment, as specified in equation (24). In particular, I consider the case pu; > u_.°

Figure 6 plots the conditional saddle paths under asymmetric adjustment costs.
Relative to the saddle path associated with A=G, the conditional saddle path for A=B
is substantially steeper. As a result, a one-standard-deviation TFP shock generates
a larger consumption response when the capital stock is low (3.42%) than when it is
high (2.42%).

This geometric representation formalizes the intuition that “climbing up is diffi-
cult, falling down is easy”—a recurring theme in the literature on asymmetric business
cycles and endogenous disasters (Petrosky-Nadeau et al., 2018). In this framework,
asymmetric frictions generate differently tilted conditional saddles: the steeper slope
under low productivity implies an aggressive contraction across manifolds upon neg-
ative shocks, while recovery proceeds more slowly along a flatter path. The resulting
gap in shock responsiveness (3.42% versus 2.42% in the example above) arises pre-
cisely because the geometric distance between conditional saddles varies with the
economy’s position along them.

This geometric framework suggests that whenever a model in the literature fea-
tures endogenous state-dependent dynamics, such behavior must fundamentally orig-
inate from the differential tilt of the conditional saddle paths. Theorem 1 establishes
that state independence is equivalent to a vertical-translation geometry, in which
equilibrium manifolds remain parallel along the endogenous state. It follows that any
deviation into state-dependent responsiveness—regardless of whether the underlying

friction is financial, labor-related, or based on adjustment costs—mnecessarily implies

6The adjustment-cost parameters are not calibrated. For illustrative purposes, I set yuy = 4 and
u— = 1. All other parameters follow a standard quarterly RBC calibration.
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Figure 6: Differently tilted conditional saddle paths — endogenous state dependence

Notes: The figure plots conditional saddle paths for A = B (solid) and A = G (dashed) implied by
an RBC model with asymmetric wealth adjustment cost. The conditional saddle path for A = B is
steeper than the one for A = G. The histogram in the background plots the time-series distribution
of the aggregate capital stock.

a geometric structure where the local slopes of the conditional saddles diverge across
aggregate regimes. In this sense, the “tilt” (the local rate of endogenous accumula-
tion or decumulation) serves as the universal geometric signature of endogenous state
dependence.

Furthermore, this framework clarifies the distinction between endogenous and
exogenous state dependence. While endogenous state dependence—the sensitivity of
shocks to the current endogenous state—mecessarily originates from the differential
tilt of the conditional saddle paths , exogenous state dependence arises from the
interaction and magnitude of the shifts across these manifolds. Even in economies
where saddles are geometrically parallel—resulting in state-independent impact gaps
across capital stocks—the equilibrium path may still exhibit nonlinear responses if
the exogenous states are “outstretched.” In such cases, the vertical distance between
saddles reflects a larger exogenous regime shift, creating greater fluctuations that are
decomposed into horizontal propagation along the saddles and vertical jumps across

them. Consequently, the conditional saddle representation provides a unified visual
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tool for assessing both the slope-driven propagation of endogenous frictions and the

level-driven impact of exogenous aggregate shocks.

4 Heterogeneous-household economy and dimen-

sion reduction

This section introduces conditional saddle path in a canonical heterogeneous-household
economy. I consider a continuum of unit measure of ex-ante homogeneous households.

The recursive formulation of the households’ problem is as follows:

v(a,z;@,A) = max log(c) + BEv(d’, 2"; &', A') (25)
c+d =al+rX))+wX)z (26)
>0 (27)

D' = opao(D,A), A~ T.p0(A'|A). (28)

The problem is the same as in the representative-household economy except for 1)
uninsurable idiosyncratic labor productivity, which follows a Markov process z ~
I'.(Z'|2); 2) inclusion of distribution of individual states @ in the aggregate endogenous
state; and 3) the corresponding change in the law of motions for the endogenous
aggregate state. The RCE is defined as in Krusell and Smith (1998).

The model includes two different stochastic exogenous processes: idiosyncratic
productivity and aggregate TFP. Therefore, there are two layers of conditional saddle
paths: one is individual conditional saddle path, and the other is aggregate conditional
saddle path. The individual saddle path has its own cross-sectional implication which
deserves a separate analysis, but it is out of this paper’s focus. So, the corresponding
analysis is included in Appendix. I elaborate on the aggregate conditional saddle with
stochastic TFP process, where the model closely follows Krusell and Smith (1998).7

Krusell and Smith (1998) posits an endogenous law of motion that tracks aggregate
capital K rather than the full distribution @: log K’ = a(A) + B(A)log K, for A €

{B,G}, where a and [ are state-dependent coefficients. This formulation embeds

"In the original model of Krusell and Smith (1998), the exogenous individual labor supply co-
moves with the exogenous aggregate TFP. All the results stay unaffected after including this feature
in the model, but for the expositional brevity, I assume the labor supply is exogenously fixed.
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two key assumptions: (i) that aggregate capital K is (approximately) sufficient to
summarize endogenous aggregate dynamics, and (ii) that the law of motion is log-
linear. Using the conditional-saddle framework, this paper establishes that K is an
exact sufficient statistic. By contrast, log-linearity follows from the specific model
structure in Krusell and Smith (1998) and typically requires numerical verification.
The following theorem provides the first step toward establishing the exact sufficiency
of K.

Theorem 2 (Monotone aggregate variable as a coordinate).

Given (®g, Ag), suppose an aggregate equilibrium variable e : M a(Pg, Ag) — R wvaries
strictly monotonically, i.e., there exists a homeomorphism 14 : (0,1] — Ma(Py, Ao)
such that the function s — e(1a(s)) is strictly monotone on (0,1]. Then e uniquely

indexes endogenous states on the conditional saddle:
e(@)=e@) = I=9. (29)

Hence there exists a (unique) inverse map ¢4 such that pa(e(®)) = @ on M 4(Py, Ao),
and any equilibrium object restricted to the conditional saddle can be written as a

function of the single scalar e.

Proof. Because M, is parameterized by 14 : (0,1] — M4, strict monotonicity of
s — e(1a(s)) implies injectivity of e on M4. Since e : My — e(My) is surjective
by definition of the image, injectivity implies that e is a bijection between M 4 and

e(M ). Hence an inverse @4 : (M) — M4 exists. |

The intuition behind the theoretical result is as follows: Fix a regime A € {B,G}
and restrict attention to the set of equilibrium states that lie on the corresponding
conditional saddle (the invariant equilibrium manifold). Starting from any initial
equilibrium state @y on this set, the equilibrium law of motion determines a unique
subsequent sequence {®;};>¢ that remains on the invariant conditional saddle path.
Then, it converges to the unique conditional steady state. The key geometric obser-
vation is that the conditional saddle is effectively a string: it can be viewed as a single
curve of equilibrium states. As a consequence, points on the conditional saddle are
naturally ordered by their position along this curve.

Now consider the aggregate equilibrium variable e. By assumption, along any

equilibrium history on the conditional saddle, the scalar e; = e(®;) moves strictly
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monotonically over time and converges to its conditional steady-state value. Intu-
itively, e acts as a “progress meter” along the conditional saddle: it always moves in
one direction toward its limiting value and never reverses.

Suppose, toward a contradiction, that e were not injective on the conditional
saddle. Then there exist two distinct equilibrium states @ # @&’ on the conditional
saddle such that e(®) = e(®’). Consider the two equilibrium histories generated by
these initial states. Since both histories begin with the same value of the progress
meter and e; must move strictly one-way toward the same limit along the conditional
saddle, the two histories would have to remain synchronized in their progress toward
the conditional steady state. But this is impossible because distinct starting points
on a one-dimensional conditional saddle generate equilibrium histories that cannot
merge. This contradiction implies that no two distinct equilibrium states on the
conditional saddle can share the same value of e.

Therefore e uniquely labels equilibrium states on the conditional saddle: if e(®) =
e(?'), then ¢ = @'. This establishes the injectivity claim in Theorem 2 and explains
why a strictly monotone, convergent aggregate variable can serve as a one-dimensional

indexing variable for equilibrium dynamics on the conditional saddle.

Remark 2 (Injectivity and sufficiency).
Because e is injective on M 4, any equilibrium object restricted to M 4 can be written
as a function of (e, A)

Specifically, the following variables can be defined:

V(18 A) € VI(E A) i= {u(-, 5 D, A) VD € Ma(Po, Ag) s.t. e(®) =8} (30)
(2, A) € R(E, A) = {1(®, A)NS € Mu(do, Ao) s.t. e(d) = &} (31)
wé(8, A) € W (&, A) == {w(®, A)VD € MA(So, Ag) sit. e(®) =&} (32)

e (5 A) € GE A) = {e(I(®,A) VP € Ma(o, Ao) sit. e(B) =¢}.  (33)

V,R,W and G are nonempty by Assumption 1 and singletons by Theorem 2. There-

fore, the recursive problem below is equivalent to the original recursive formulation
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in equilibrium, as they yield the same equilibrium allocations.

v°(a, z;e, A) = max  log(c) + BEv(d’, s ¢, A') (34)
c+ad =a(l+re, A)) +w(e, A)z (35)
>0 (36)

¢ = Feendo(ev A)? A~ FemO(A/‘A>7 (37>

Now, I show that the conditional K nullclines are the same is in the representative

agent model in the following proposition.

Proposition 3 (Conditional K-nullclines of Krusell and Smith (1998)).
The heterogeneous household model’s conditional K nullclines are identical to the
counterparts of the model with the representative household and invariant over the

wmiatial distribution Dy :

Cgcnull — B(Kgcnull>a o 5Kgcnull (38)
Ogcnull — G(Kgcnull>a _ 5Kgcnull (39)

where Cff”‘“” 18 aggregate consumption.

Proof.
As in Proposition 1, the stationary condition 0 X' = I immediately implies the form

of the conditional nullclines. [ |

Proposition 3 shows that the K-nullcline in the Krusell-Smith model is distribution-
invariant. While this provides strong intuition for monotonicity, it does not by itself
rule out discrete-time pathologies where the saddle path touches the nullcline at an
intermediate point @ # &% (a “turning point”) or crosses it repeatedly (a “spiral”).
Such behaviors correspond to folds or loops in the (K, C') phase diagram, which would
defeat a single-valued global representation indexed by K.

To rule out these pathologies rigorously, I impose the single-crossing condition
(SC):

C(P,A) = CK™(K(P) = d=9% Vdec My (SC)

In continuous-time formulations, this condition is often redundant because direction

reversals require K to pass through zero continuously, which by uniqueness of the
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steady state occurs only at . Condition (SC) is the necessary discrete-time ana-

logue to ensure well-behaved saddle geometry.®

Remark 3 (Verifying the single-crossing condition).
Condition (SC) has a direct geometric interpretation: the saddle path in the (K, C)
phase plane must not cross the K-nullcline C = AK* — 0K except at the steady state.

This rules out:
1. Spirals: Trajectories orbiting the steady state, crossing the nullcline repeatedly.

2. Wobbles: Trajectories reversing direction (turning points) away from the steady

state.

Figure 7 confirms that in the canonical Krusell-Smith economy, the conditional sad-
dle paths lie entirely within the “northeast” and “southwest” cones defined by the
nullcline, satisfying (SC).

Proposition 4 (K monotonicity and injectivity).
Fiz A € {B,G}. Under Assumption 1 and Condition (SC), aggregate capital con-
verges to K strictly monotonically along the frozen-regime continuation. Conse-

quently, K is injective on My.

Proof.
Define AK (@) := CE™(K(®)) — C(d, A), so that K, — K; = AK(®;). By (SC),
AK(®) =0 if and only if & = .
Define § := AK o4 : (0,1] — R. Since 4 is a homeomorphism and both K and
C(-, A) are continuous, ¢ is continuous on (0,1]. By (SC), 6(s) = 0 only at s = 1.
By the Intermediate Value Theorem, § cannot change sign on (0, 1) without pass-
ing through zero. Hence § has constant sign on (0,1): either §(s) > 0 for all s < 1
(so K is strictly increasing) or d(s) < 0 for all s < 1 (so K is strictly decreasing).
Since K moves strictly monotonically along the topological string M 4, it maps

distinct states to distinct capital levels. Thus K is injective on M 4. [ |

Proposition 4 establishes that aggregate capital K is an exact sufficient statistic

for endogenous state dynamics in a canonical heterogeneous-household business-cycle

8Discrete time allows “jumps” over the nullcline or “turning points” where AK reverses sign
without passing through a stationary state. Condition (SC) explicitly rules out such pathologies,
aligning with the computational practice in heterogeneous-agent macroeconomics and the original
Krusell and Smith (1998) framework.
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model. To complement this theoretical result, Figure 7 plots the computed conditional
saddle paths in the K — C phase diagram. The model is solved globally using the
repeated transition method, and the dynamics under each frozen aggregate state are
simulated for 2,000 periods. Although the true endogenous state of the model is the
full distribution @ rather than K alone, the figure shows that conditional saddle paths
are strictly and monotonically ordered in K, providing clear computational support

for the sufficiency result.

272 10.025
—Cond. saddle for A=B e
2.7 H= ~ Cond. saddle for A=G 7
% Cond. ss for A=B -7
2 68 . % Cond. ss for A=G 7 -0.02
2.66
10.015 >
2.64 =
— Q0
© 8
2.62 o
10.01
2.6
2.58 -10.005
2.56
254 | | | | | | | O
35 35.5 36 36.5 37 375 38
K

t
Figure 7: Conditional saddle paths in Krusell and Smith (1998)

Notes: The figure plots conditional saddle paths for A = B (solid) and A = G (dashed) implied by a
canonical heterogeneous household business cycle model (Krusell and Smith, 1998). The histogram
in the background plots the time-series distribution of the aggregate capital stock.

From near rationality to complete rationality Krusell and Smith (1998) as-
sumes the specific parametric law of motion to compute the heterogeneous-household
model. Then, they confirm the accuracy of the law of motion through the accu-
rate consistency between the realized and assumed dynamics. After the celebrated
contribution, the approach is often labeled as near or bounded rational approach.
The conditional-saddle framework shows that, restricted to the conditional saddle,

conditioning on K can be exact (a sufficient statistic) for equilibrium objects. The
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additional log-linear functional form used by Krusell and Smith (1998) remains a

quantitative approximation.

Parametric form of the conditional saddle paths Despite the indexing func-
tion K, specific conditional saddle paths and the form of the law of motion remains
undetermined. This problem exists even for representative agent business cycle mod-
els. Lee (2025) develops repeated transition method that utilizes the recurrence of the
equilibrium allocations along the conditional saddle path. For heterogeneous-agent
models, the existence of the indexing variable (sufficient statistic) starkly eases the
implementation of the RTM. Theorem 2 and Proposition 4 theoretically supports the
implementation feasibility of the RTM using the sufficient statistic.

4.1 Extensions

Theorem 2 provides verifiable conditions for dimension reduction: identify the K-
nullcline and verify monotonicity. This section applies the diagnostic to several ex-

tensions, illustrating both the framework’s scope and its limits.

Economies with multiple endogenous states Theorem 2 applies to an economy
with the multivariate (distributional) endogenous state. As long as there is an aggre-
gate equilibrium variable e that strictly monotonically converges to the conditional
steady-state level, then e is a sufficient statistic.

For example, consider the following model that extends the heterogeneous-agent
model above by adding endogenous bond holding. The following is the corresponding

budget constraint:
ct+d +q(@,A =a(l+7r(P,A)+b+w(® Az (40)
where b is bond holding and ¢ is the bond price competitively determined by
/ V(a, = ®, A)dd — 0. (41)

As long as the production function and the labor supply is assumed as in the canonical
setup as above, the K nullcline stays invariant from the representative counterpart,

enabling K sufficiency. Lee (2025) showed that the equilibrium allocations are strictly
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monotonically sorted along K through the globally solved computational outcome.
This is because the conditional saddle’s strict monotone property along K implied by
its conditional nullcline is unaffected by the inclusion of bond dimension. It confirms

the prediction of Theorem 2.

Models with endogenous labor supply A heterogeneous-household model with
endogenous labor supply and CRRA-GHH preferences is a natural extension of the
exogenous-labor-supply framework studied in this paper. GHH utility is particularly
useful in this context because it eliminates wealth effects in labor-supply decisions,
which could otherwise disrupt the monotonicity properties through distributional

channels. Consider preferences given by

l1-0o
1 142
u(e,ly) = (C - HLllH X> ’ (42)

l1—0

and the budget constraint
c+ad =a(l+r(PA)+w(® A)zly. (43)

where 2z denotes idiosyncratic labor productivity. The individual labor-supply opti-

mality condition then implies the following aggregate labor supply L(®, A):

li(a, 2@, A) = (f)xw(gb, A (44)

n

L(®, A) = /le(a,Z;@,A)d@Iw(QA)X/ P

do, (45)

where M = f Z;:l d®., and @, is the cumulative distribution function of the stationary
productivity distribution. Then, from the optimality condition in the production

sector with respect to the labor demand,

(1 — @) AKOL(®, A)™ = w(d, A) = (L@’ A)) . (46)
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Combining these two conditions, the conditional aggregate capital nullcline is as fol-

lows:
cgcnull _ A(Mﬁ((l . a)A)ﬁ)1—0¢(Kjl4(cnull)a+(1*a)% . 5K§cnull’ (47)
which satisfies the same monotone convergence to the conditional steady state.

Distributional disturbance Now consider the following CRRA-utility setup:

u(e,ly) = Iy ~. (48)

The corresponding individual labor supply is as follows:

li(a, 20, A) = (W) w(®, A)X (49)

Following the same step as in the GHH case above, I obtain the following conditional

K nullcline condition:

ax

Cfcnull — A(M(ngcnull)ﬁ((l o a)A)ﬁ>1fa(K£(cnull)a+(1—a) Thax — 5K§cnull’
(50)

where M (pKerull) = [ ;XX;X ddBedl - Because of heterogeneous wealth effects, the
conditional capital nullcline depends on the distribution of individual states @&enull
associated with the level K¢, As a result, strict monotonicity of the capital dynam-
ics cannot be verified analytically. Nevertheless, Lee (2025) provides computational
evidence that the recursive competitive equilibrium of the model with this utility
specification exhibits strictly monotone convergence of aggregate capital K under the

standard calibration.

5 Concluding remarks

This paper develops a geometric framework for stochastic equilibrium dynamics by
introducing conditional saddle paths: invariant equilibrium manifolds defined under
frozen exogenous states. This object extends the familiar saddle-path intuition from

deterministic models to environments under aggregate uncertainty. In the resulting
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phase-diagram representation, business-cycle fluctuations decompose into movements
along a conditional saddle (endogenous propagation within a regime) and across
conditional saddles (transitions in exogenous states). The framework clarifies why
impulse responses can be state-dependent: such dependence is a geometric property
of the equilibrium manifold and arises precisely when conditional saddles differ in
slope rather than by mere vertical translation.

When an aggregate equilibrium variable varies strictly monotonically along a con-
ditional saddle, it provides a global coordinate: it uniquely indexes equilibrium states
and therefore summarizes all equilibrium allocations and prices on the relevant invari-
ant set. Applying this logic, I provide a theoretical proof of the sufficiency of aggregate
capital in a canonical heterogeneous-household model. Beyond the Krusell-Smith
benchmark, the same reasoning applies in multi-asset and richer heterogeneous-agent
environments whenever a monotone-convergent aggregate coordinate exists.

More broadly, conditional saddles offer a complementary lens on stochastic mod-
els: they provide a language for interpreting nonlinear dynamics and for assessing
when scalar state approximations are exact rather than merely accurate. They also
provide a natural geometry for state-contingent policy analysis: by making state
dependence explicit in the phase diagram, the framework clarifies when the same
intervention should be expected to have different quantitative effects across regimes
and over the cycle. A promising direction for future work is to use these geometric
objects to sharpen empirical restrictions on state dependence and to discipline the de-
sign of state-contingent stabilization policies in heterogeneous-agent economies under

aggregate uncertainty.
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