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A Data for the empirical analysis and an additional motivat-

ing fact

I use the U.S. Compustat data for firm-level empirical analyses. Firms with negative assets

and zero employment are excluded from the sample. All firm-level variables except capital

stock and investment are deflated by the GDP deflator. Investment is deflated by non-

residential fixed investment deflator available from National Income and Product Accounts

data (NIPA Table 1.1.9, line 9). The firm-level real capital stock is obtained by applying

the perpetual inventory method to deflated net investment. The net investment is obtained

from the lag difference of the balance sheet item Property, Plant, and Equipment (Net).

The capital stock therefore includes only tangible assets and excludes intangible capital.

The industry is categorized by the first two-digit NAICS code.1

A.1 Conditional heteroskedasticity

Figure A.1: Conditional heteroskedasticity of aggregate investment
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Notes: The estimated standard deviation of the residual (y-axis) is obtained from fitting the
aggregate investment-to-capital ratio (%) into an autoregressive process with four lags. The
average lagged spike ratio of large firms (%) is obtained by averaging the most recent past two
spike ratios for each observation of residualized investments. The years overlaid on the dots are
the observed years of the residualized investment-to-capital ratios.

I show aggregate investment rate is conditionally heteroskedastic on the average lagged

1If only SIC code is available for a firm, I imputed the NAICS code following online appendix D.2 of
Autor et al. (2020). If both NAICS and SIC are missing, I filled in the next available industry code for the
firm.
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spike ratio of large firms. That is, the residualized volatility of aggregate investment rate is

high if a great portion of large firms have recently made lumpy investments synchronously.

For this analysis, I use aggregate data on non-residential investment (NIPA Table 1.1.5,

line 9) and aggregate capital (Fixed Asset Accounts Table 1.1, line 4) from BEA. The thick

line in Figure A.1 plots the estimates of the log standard deviation of residuals from the

autoregression of aggregate investment rates as a function of the recent average of large

firms’ spike ratio.2 The recent average is based on the average spike ratio of the past

two years. As can be seen from this figure, aggregate investment rates are heteroskedastic

conditional on the lagged average spike ratio. Table A.1 reports the regression coefficients

for the fitted line. According to the regression result, a one-standard-deviation increase

(1.47%) in the large firms’ past spike ratio is associated with a one-standard-deviation

increase (0.50%) in the aggregate investment’s residualized volatility. Consistent with the

patterns in Figure 1 in the main text, the three recession years of interest are located at

the top-right corner in Figure A.1.

Table A.1: Residual volatility of the aggregate investment and spike ratios

Dependent variable: log(σ̂t)
Large Small

spiket−1 (%) 0.337 0.077
(0.138) (0.074)

Constant −4.131 −2.317
(1.290) (1.270)

Observations 35 35
R2 0.154 0.032
Adjusted R2 0.128 0.002

Notes: The dependent variable is the log absolute value of the residuals from fitting the aggregate
investment to capital ratio into AR(4) process. The independent variables are the past average
spike ratio, spiket−1, and the intercept.

2This empirical analysis is motivated from the conditional heteroskedasticity analysis in Figure 1 of
Bachmann et al. (2013). Differently from theirs, the focus is on the large firms’ recent lumpy investments.
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The independent variable spiket−1 is defined as follows:

spiket−1 :=
1

J

J−1∑
j=0

SpikeRatiot−1−j

SpikeRatiot :=
#Extensive-margin adjustmentt

#Firmst

where J is the number of past years to be included in the average. In the reported result,

I use J = 3. The result is robust over J = 1, 2, 4.

B Firm-level interest elasticity in the models and the data

B.1 Firm-level interest elasticities of investments in the models

This section compares the semi-elasticities of firm-level investment across different models.

I compare six different models: 1) a baseline model with ζ = 3.7; 2) calibrated baseline

model (ζ = 3.5); 3) a baseline model with ζ = 2; 4) a baseline model with ζ = 0 (Winberry,

2021); 5) a model with only convex adjustment cost (no fixed cost); and 6) a model with

only fixed adjustment cost (no convex adjustment cost) (Khan and Thomas, 2008). The

models are calibrated to match the same calibration targets as the calibrated baseline model

in the main text except for the cross-sectional semi-elasticities.3 Additionally, for the model

with both fixed and convex adjustment costs, I matched the cross-sectional dispersion of

the investment-to-capital ratio.

Table B.2 reports the semi-elasticities of firm-level investments for different groups across

different models. The elasticities are measured by the average contemporaneous change in

the firm-level investment in per cent from the steady-state when the interest rate changes

by 1%.4 In particular, I calculate the average between the elasticity measured when the

interest rate increases by 1% and the one measured when the interest rate decreases by 1%

to address the asymmetry in the responses to the positive and negative interest rate shocks.

3The target moment is the same as in the baseline model calibration, which is reported in Table 3 of the
main text.

4The elasticity is measured in the partial equilibrium as in Winberry (2021) and Koby and Wolf (2020).
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The average interest-elasticity of group j ∈ {All, Small, Large} is defined as follows:

Elasticityjt =

∫
{Iijt>0}∆log(Iijtψijt + Icijt(1− ψijt))dΦj

∆rt

where ψijt is the extensive-margin adjustment probability; Iijt is then investment after

fixed cost is paid and Icijt is the investment when the fixed cost is unpaid; Φj is the joint

distribution of firms conditional on group j.

The extensive-margin elasticity of group j ∈ {All, Small, Large} is defined as the aver-

age contemporaneous change in the firm-level investment driven by extensive-margin prob-

ability changes in per cent from the steady-state when the interest rate changes by 1%.

Therefore, the investment policy functions are fixed at the steady-state level, while the

extensive-margin probabilities deviate from the steady-state:

Elasticityextjt =

∫
{Iijt>0}∆log(I

ss
ijtψijt + Iss,cijt (1− ψijt))dΦj

∆rt

where ψijt is the extensive-margin adjustment probability; Iijt is then investment after

fixed cost is paid and Icijt is the investment when the fixed cost is unpaid; Φj is the joint

distribution of firms conditional on group j.

The intensive-margin elasticity of group j is defined as the average contemporaneous

change in the firm-level investment driven by investment magnitude changes in per cent

from the steady-state when the interest rate changes by 1%. Therefore, the extensive-

margin probability is fixed at the steady-state level, while the investment policy functions

deviate from the steady-state.

Elasticityintjt =

∫
{Iijt>0}∆log(Iijtψ

ss
ijt + Icijt(1− ψssijt))dΦj

∆rt
.

The elasticity of the spike ratio of group j is defined as the average contemporaneous

change in the fraction of firms investing greater than 20% of the existing capital stock when
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the interest rate changes by 1%.

ElasticitySpikeRatiojt =

∫
{Iijt>0}∆I

{
Iijtψijt+I

c
ijt(1−ψijt)

kijt
> 0.2

}
dΦj

∆rt

In Table B.2, the first four rows of the table report the elasticities of investment con-

ditional on Iijt > 0 where i is a firm index, j is a size group indicator, and t is the time

subscript; the next four rows report the extensive-margin elasticities; the following four rows

report the intensive-margin elasticities; the last four rows report the spike ratio elasticities.5

The elasticity of investment is as defined in section B.1. I calculate the average between

the elasticity measured when the interest rate increases by 1% and the one measured when

the interest rate decreases by 1% to address the asymmetry in the responses to the positive

and negative interest rate shocks.

As can be seen from the columns other than the second and the third in Table B.2, the

aggregate investment elasticities are well-matched with the empirical level once both convex

and fixed adjustment costs are considered. Especially, the inclusion of convex adjustment

cost dramatically dampens the aggregate elasticity, as can be seen from the aggregate

elasticity in the fifth column compared to that of the sixth column (Winberry, 2021; Koby

and Wolf, 2020).

The cross-sectional elasticity ratio between small and large in other models than the

baseline cannot match the empirical estimate of 1.95 from Zwick and Mahon (2017). As the

fixed cost becomes size-dependent and as the intra-firm interdependence across establish-

ments rises, the cross-sectional elasticity ratio increases. From the middle and lower part of

the table, the size-dependence and the intra-firm linkages increase not only the extensive-

margin S/L ratio but the intensive-margin S/L ratio. This is due to the selection effect on

those large firms that remain to adjust despite the higher fixed cost.

Sensitivity and monotonicity The cross-sectional semi-elasticity ratio between

small and large firms smoothly and monotonically increase in the parameter ζ. These results

5Following Zwick and Mahon (2017), I define the elasticity conditional on Iijt > 0 as investment elasticity.

6



Table B.2: Semi-elasticity of investment across the models and the decomposition

ζ = 3.7 ζ = 3.5 (baseline) ζ = 2 ζ = 0 convex only fixed only

Investment
All 6.52 6.6 6 6.4 5.85 256.80
Small 9.13 8.93 6.55 4.9 5.62 179.54
Large 3.98 4.92 4.67 10.06 6.82 403.02
S/L ratio 2.29 1.81 1.4 0.49 0.82 0.45

Ext. margin
All 3.47 3.44 3.19 3 3.09 68.38
Small 4.96 4.91 4.22 3.27 3.75 79.14
Large 1.95 1.97 2.18 2.68 2.41 63.42
S/L ratio 2.54 2.49 1.94 1.22 1.56 1.25

Int. margin
All 3.04 3.15 2.8 3.4 2.76 72.59
Small 4.14 4 2.32 1.62 1.86 62.61
Large 2.03 2.95 2.49 7.38 4.4 90.43
S/L ratio 2.04 1.36 0.93 0.22 0.42 0.69

Spike ratio
All 1.45 1.46 1.21 1.46 1.28 22.09
Small 2.82 2.82 1.85 2.92 1.56 27.95
Large 0.42 0.49 0.41 0.73 0.6 13.35
S/L ratio 6.71 5.76 4.45 4.02 2.58 2.09

Notes: The semi-elasticities of investment variables are computed from the contemporaneous
response to an interest rate change in the partial equilibrium. To address the asymmetry between
responses to the positive and negative interest rate shocks, I report the average responses to the
positive 1% and negative 1% interest rate changes.

demonstrate two key points: (1) the parameter ζ is indeed critical for generating both the

correct elasticity patterns and the fragility mechanism, and (2) the results vary smoothly

with ζ, indicating that my findings are not driven by a knife-edge parameter choice. The

baseline value of ζ = 3.5 emerges naturally from matching the empirical elasticity patterns.

B.1.1 Elasticity visualization

Figure B.2 visualizes the large and small firms’ interest elasticities for the baseline model

(panel (a)), for a model with fixed cost only (panel (b)), and for a model with ζ = 0 (panel

(c)).6 Throughout this paper, all the alternative models to the baseline are calibrated to

sharply match the target moments except for the cross-sectional semi-elasticity ratio.

6The model with convex and fixed adjustment cost is a prototype of the models in Winberry (2021) and
Koby and Wolf (2020).
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Figure B.2: Semi-elasticities of investments across different models
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(a) Baseline (ζ = 3.5)
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(b) Fixed only
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(c) Convex + Fixed (ζ = 0)

Notes: The figure plots the deviation of investment from the steady-state level when the interest rate changes
for each different model. The vertical axis is the interest rate in per cent, and the horizontal axis is the
percentage deviation from the steady-state investment. The horizontal dotted line indicates the equilibrium
interest rate. The thin solid line labeled as ZM (2017) indicates Zwick and Mahon (2017)’s reference level
of 7.5.

In each panel, the vertical axis is the interest rate in per cent, and the horizontal

axis is the percentage deviation from the steady-state investment. The horizontal dotted

line indicates the equilibrium interest rate. As the interest rate decreases, all models’

average deviation of investment from the steady-state increases. In the baseline model

(panel (a)), the ranking of the interest elasticity across the firm-size group is consistent with

the empirical patterns, as can be seen from the steeper curve of the large firms. However, in

the model with ζ = 0 (panel (c)), the large firms’ average deviation of investment from the

steady-state increases faster than small firms as the interest rate decreases. In the model

with a fixed cost only (panel (b)), the interest elasticities of all groups are significantly higher

than the ones in the other two models, as can be checked from the large-scale variation along

the horizontal axis.
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B.2 Firm-level interest-elasticities of investments in the data

In this section, I empirically estimate the elasticity of firm-level investment using firm-level

balance sheet data and monetary policy shocks in the literature. Prior research papers in

the literature have provided the well-identified interest-elasticities of firm-level investments,

but those estimates are not informative enough to pin down the missing component in the

existing model frameworks. For this, I estimate the elasticities of small and large firms’

spike ratios to develop a model with realistic firm-level investment.

I estimate the following regression separately for large firms and small firms:

f(kit, kit+1) = βMPt + αi + αsy + Controlsit + ϵit

where MPt is the monetary policy shock; αi is firm fixed effect; αsy is sector-year fixed

effect. The control variables include lagged current account (ACTt−1), lagged total debt

(DTt−1), and operating profit (OIBDPt) normalized by lagged total asset (ATt−1), log of

lagged capital stock, and log of employment (EMPt). The standard errors are two-way

clustered across firms and years.

Table B.3 reports the coefficient of monetary policy shock (MPt) for large and small

firms across different choices of dependent variables.7 As can be seen from the first two

columns, the elasticity of the investment is significantly lower in large firms than in small

firms. This is consistent with the empirical results in the literature and contradictory to

the model-implied elasticities in the previous section. Also, the sensitivity of the spike ratio

is significantly lower in large firms than small firms, as reported in the third and fourth

columns.8

The differences in the elasticities in Table B.2 and Table B.3 sharply indicate that the

existing models with fixed and convex adjustment costs cannot correctly capture the ranking

of interest-elasticities between large and small firms. Therefore, a new model is needed to

study the role of large firms’ investments over the business cycle. Then, a question still

7I check the robustness of result using a different cutoff 10% than 20% in Table B.4.
8Two estimates are statistically different under the significance level of 0.05.
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Table B.3: Investment sensitivities to the monetary policy shocks

Dependent variables:

log(Iit) I{ Iitkit > 0.2}

L S L S

MPt -2.201 -7.025 -0.870 -2.072
(0.606) (2.41) (0.367) (0.676)

Obs. 29,400 7,903 29,400 7,903
R2 0.929 0.791 0.603 0.558
Firm FE Yes Yes Yes Yes
Sect.-year FE Yes Yes Yes Yes
Firm-level ctrl. Yes Yes Yes Yes
Two-way cl. Yes Yes Yes Yes

Notes: The independent variables include monetary policy shocks, fixed effects (firm and sector-
year), and firm-level control variables (lagged current account (ACTt−1), lagged total debt
(DTt−1), and operating profit (OIBDPt) normalized by lagged total asset (ATt−1), log of lagged
capital stock, and log of employment (EMPt)). The numbers in the bracket are the standard
errors. The standard errors are clustered two-way by firm and year.

remains about which component of the existing model needs to be improved to capture the

empirical relationship. There are broadly two options: lowering either intensive or extensive

margin elasticities of large firms.

On this issue, the elasticity of spike ratio gives an answer. I set the model with both fixed

and convex adjustment costs as a benchmark model. From the comparison of the interest-

elasticities of spike ratios between the benchmark model and the data, the large firms’ spike

ratio needs to be less elastic, and small firms’ spike ratio needs to be more elastic than in

the benchmark model to match the empirical counterpart. Therefore, the extensive-margin

elasticity needs to be improved from the benchmark model. In the following section, I

develop a heterogeneous-firm real business cycle model where the elasticities of investments

and spike ratios are at the empirically-supported level through the modification in the

extensive-margin investment patterns of the benchmark model.

In the following tables, I report a set of extended regression results using the tight (Table

B.4) and wide (Table B.5) window monetary policy shocks.
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C Empirical validation: spike ratio dynamics in model vs.

data

In this section, I validate the calibrated baseline model by comparing model-implied large

firm spike ratios with their observed counterparts from Compustat using actual TFP series.

The global solution method recovers the full dynamics of recursive competitive equilibrium

(RCE) allocations over the state space realized along the equilibrium path. Therefore,

given the initial endogenous state (or sufficient statistic) and the stream of exogenous state

realizations, the corresponding equilibrium path can be computed.9

Figure C.3 plots the time series of spike ratios in the model (solid line) and the data

(dashed line). For the exogenous TFP series, I use the TFP from the Bureau of Labor

Statistics (BLS) (panel (a)) and from Fernald (2014) (panel (b)). The initial state is deter-

mined by the level that maximizes the fit (mean-squared distance) between the model and

data spike ratio series.

Figure C.3: Model-implied vs. observed spike ratios using actual TFP series
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Notes: Figure plots the time series of spike ratios in the model (solid line) and the data (dashed
line). The TFP series for the baseline model in panel (a) is from the Bureau of Labor Statistics
(BLS), and the TFP data for panel (b) is from Fernald (2014).

9The exact combination of endogenous and exogenous states may not be available in the simulated
equilibrium path. Therefore, I use the two-dimensional interpolation to obtain policy functions using the
nearest state realizations.
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As shown in Figure C.3, the spike ratios in the model and data follow closely related

patterns, which validates the calibrated baseline model. One noticeable divergence occurs

just before the dot-com crash, when the data exhibit a stronger surge in spikes, likely

reflecting sector-specific dynamics outside the model’s scope. The time series of panel (a)

features correlation of 0.58 for the full time series and 0.79 without the prior 7 years before

the dot-com bubble crash (30 observations), which are all statistically significant at the 5%

significance level. For panel (b), the correlation coefficient is 0.46 for the full series and

0.72 without the prior 7 years before the dot-com bubble crash (30 observations) at the 5%

significance level.
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D Monetary policy shock

I construct an exogenous monetary policy shock following Ottonello and Winberry (2020)

and Jeenas (2018). The monetary policy shock is obtained by time aggregating high-

frequency monetary policy shock identified from the unexpected jump (drop) in the federal

funds rate during a 30-minutes window around the FOMC announcement.10 To capture

the unexpected component in the federal funds rate, I use the change in the rate implied

by the current-month federal funds futures contract. All the data on the timings of the

FOMC announcement and the high-frequency surprise are from Gurkaynak et al. (2005)

and Gorodnichenko and Weber (2016). The sample period covers from March 1990 until

December 2009. I follow the convention that the positive monetary policy shock is an unex-

pected increase in the federal funds futures rate, so it implies the contractionary monetary

policy.

To match the data frequency between the firm-level data and the monetary policy shock,

I time aggregate the monetary policy shocks. Specifically, I compute the one-year backward

weighted average monetary policy shock at each firm’s financial year end. The weight

of each surprise is determined by the number of days between the corresponding FOMC

announcement and the next FOMC announcement.11 If the next FOMC announcement was

made after the financial year end, the days are counted until the financial year end. This

data joining process matches a firm’s balance sheet information and the monetary policy

shock at the same financial year. The weighted moving average monetary policy shock is

plotted in Figure D.4.

10The result is robust over the choice of a wider window (one-hour window) as reported in Table B.5.
11A higher weight is assigned for a monetary policy shock when there was greater amount of time for a

firm to respond to the shock (Ottonello and Winberry, 2020).
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Figure D.4: One-year moving average monetary policy shock: March 1990 ∼ December
2009
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Notes: The monetary policy shocks are obtained by time aggregating high-frequency monetary policy
shocks identified from the unexpected jump (drop) in the federal funds rate during 30-minutes (Tight)
and one-hour (Wide) windows around the FOMC announcement. To capture the unexpected compo-
nent in the federal funds rate, I use the change in the rate implied by the current-month federal funds
futures contract. All the data on the timings of the FOMC announcement and the high-frequency
surprise are from Gurkaynak et al. (2005) and Gorodnichenko and Weber (2016).
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E Solution method: the sequence-space global solution method

This section explains the solution method I use to compute the recursive competitive equi-

librium. I use the repeated transition method, developed concurrently for the computation

of nonlinear aggregate dynamics under aggregate uncertainty in Lee (2025). As highlighted

in Bachmann et al. (2013), the strong general equilibrium effect significantly contributes to

the linearity in the dynamics of aggregate allocations. However, once the model captures

realistic interest-elasticity, the general equilibrium effect is necessarily weakened, leaving

the aggregate dynamics highly nonlinear. Due to this highly nonlinear aggregate dynamics

in general equilibrium, there are two layers of difficulties in using the algorithm of Krusell

and Smith (1998). The first is difficulty in choosing a sufficient statistics for the aggregate

dynamics. The model’s nonlinear aggregate dynamics might not be sufficiently explained

by the moves in aggregate capital stocks, unlike Khan and Thomas (2008). The second

difficulty is in setting the parametric form in the law of motion. This problem interacts

with the former difficulty because even correctly chosen sufficient statistics would not give

accurate computation results due to the wrong specification of the functional form of the

law of motion. Therefore, it is almost impossible to jointly identify the correct sufficient

statistics and functional form in the law of motion.

The repeated transition method departs from the state-space-based approach, so it does

not require a researcher to specify the law of motion. The method exploits the ergodicity

of the recursive competitive equilibrium: if a simulated path is long enough, all possible

equilibrium allocations should be realized on the path. Then, by simply utilizing the realized

allocations including the value functions, the method accurately constructs the rationally

expected future value functions at each time on the simulated path.12

Using this method, I compute the predicted aggregate allocations, which the time series

of the simulated aggregate allocations almost perfectly converges to. And this time series

of the predicted aggregate allocations is not based on a parametric form of the law of

12As the method relies on the dynamics over the simulated aggregate shock path, it is similar to Boppart
et al. (2018). However, the repeated transition method departs from the perfect foresight and is a global
solution method.
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motion in a state-space representation. Figure E.5 compares the time series of the predicted

allocations and the simulated allocations.13 In the figure, panel (a) shows the predicted

aggregate dynamics and the simulated dynamics of the marginal utility, pt. These two

dynamics converged to each other with an extremely small error, as can be seen in the

solid line in panel (c). However, if the dynamics of simulated marginal utility are fitted

into the log-linear law of motion in the contemporaneous capital stock Kt, the prediction

error can become substantially large as in the dashed line in panel (c). A similar pattern

is observed in the aggregate dynamics of aggregate capital stock Kt in panel (b). The

simulated and predicted paths for Kt are computed at extremely high accuracy with the

repeated transition method, while the log-linear fitting leads to a significant prediction error

as in panel (d).

Then, I compare the fitness of different specifications of the law of motion by fitting the

equilibrium dynamics into each of them.14 Table E.6 and Table E.7 report the fitness of the

different laws of motion of pt and Kt, respectively. When the law of motion includes only

a log of contemporaneous capital stock Kt (specification (1)), the prediction errors remain

large, indicating the nonlinear nature of the equilibrium dynamics.15 However, once the

law of motion includes the fragility index in the law of motion (specification (2)), which

I define in Section 4.4, the fitness significantly improves for the dynamics of pt. However,

it does not make a significant change in the fitness for the dynamics of Kt. Finally, if the

law of motion includes contemporaneous and lagged capital stocks up to three lags in a

non-parametric form (specification (3)), the fitness substantially improves from the basic

log-linear specification for both pt and Kt.

13This figure is the fundamental accuracy plot suggested in Den Haan (2010).
14I compare only the fitness of the law of motion to the converged dynamics of equilibrium allocations.

Therefore, if the model is solved based on each of the laws of motion, the implied dynamics might display
even greater prediction errors than the reported level.

15Den Haan (2010) points out that a slight deviation in R2 from unity such as R2 = 0.995 can imply a
substantially large prediction error and significant nonlinearity.
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Figure E.5: Aggregate fluctuations in the marginal utility and the aggregate capital stock
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(c) Prediction error in marginal utility
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(d) Prediction error in aggregate capital stock

Notes: Panel (a) plots the rationally expected path and the simulated path of the marginal utility. Panel
(b) plots the rationally expected path and the simulated path of the aggregate capital stock. Panel (c) plots
the prediction errors in the marginal utility path from the repeated transition method and the log-linear
fitting. Panel (d) plots the prediction errors in the aggregate capital stock path from the repeated transition
method and the log-linear fitting.
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Table E.6: The fitness comparison across the different law of motions: pt

Dependent variables: log(pt)

R2 max(|error|)(%) mean(|error|)(%)

(1) (2) (3) (1) (2) (3) (1) (2) (3)

A1 0.9950 0.9989 0.9997 0.1599 0.0903 0.0405 0.0628 0.0251 0.0135
A2 0.9959 0.9995 0.9999 0.3146 0.1203 0.0685 0.0610 0.0223 0.0098
A3 0.9957 0.9995 0.9999 0.3160 0.1434 0.0617 0.0661 0.0218 0.0108
A4 0.9952 0.9994 0.9999 0.3934 0.1091 0.0537 0.0670 0.0234 0.0109
A5 0.9952 0.9994 0.9999 0.3274 0.1360 0.0546 0.0699 0.0243 0.0117
A6 0.9957 0.9994 0.9999 0.2560 0.1310 0.0517 0.0639 0.0246 0.0114
A7 0.9928 0.9991 0.9998 0.1668 0.1030 0.0386 0.0681 0.0179 0.0108

Notes: The table reports R2, the maximum absolute prediction error, and the mean absolute
prediction error by different law of motion (columns) and aggregate states (rows). Specification
(1) includes a constant and log of contemporaneous capital stock as a independent variable;
Specification (2) includes a constant, log of contemporaneous capital stocks, and log of fragility
index as independent variables; Specification (3) includes constant and contemporaneous and
lagged capital stocks up to three lags in a non-parametric form as independent variables.

Table E.7: The fitness comparison across the different law of motions: Kt+1

Dependent variables: log(Kt+1)

R2 max(|error|)(%) mean(|error|)(%)

(1) (2) (3) (1) (2) (3) (1) (2) (3)

A1 1.0000 1.0000 1.0000 0.0651 0.0650 0.0409 0.0117 0.0110 0.0091
A2 0.9999 0.9999 1.0000 0.1452 0.1454 0.0524 0.0198 0.0200 0.0071
A3 0.9999 0.9999 1.0000 0.3340 0.3358 0.0445 0.0191 0.0189 0.0072
A4 0.9999 0.9999 1.0000 0.2455 0.2451 0.0490 0.0211 0.0214 0.0077
A5 0.9999 0.9999 1.0000 0.2415 0.2412 0.0453 0.0222 0.0221 0.0084
A6 0.9999 0.9999 1.0000 0.1676 0.1733 0.0473 0.0194 0.0193 0.0085
A7 0.9998 0.9998 1.0000 0.1275 0.1239 0.0330 0.0168 0.0175 0.0116

Notes: The table reports R2, the maximum absolute prediction error, and the mean absolute
prediction error by different law of motion (columns) and aggregate states (rows). Specification
(1) includes a constant and log of contemporaneous capital stock as a independent variable;
Specification (2) includes a constant, log of contemporaneous capital stocks, and log of fragility
index as independent variables; Specification (3) includes constant and contemporaneous and
lagged capital stocks up to three lags in a non-parametric form as independent variables.
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F State dependence: further quantification

This section reports extended quantitative results related to the model-side state dependent

investment dynamics.

F.1 State dependence - comparison across the models

To quantify how fragility fluctuations drive variation in aggregate investment responses, I ex-

ploit the simulated equilibrium path to isolate the role of the endogenous state. Specifically,

I identify all periods where the economy experiences a negative one-standard-deviation TFP

shock and examine how investment responses vary across different fragility levels. Since the

exogenous shock magnitude is held constant across observations, any variation in responses

is driven by differences in the endogenous distribution of firms, for which the fragility index

serves as a sufficient statistic.16

Figure F.6 presents scatter plots of the state-dependent contemporaneous responses of

aggregate investment (vertical axis) against the fragility index (horizontal axis) for the

baseline model (panel (a)) and a model with convex and constant fixed adjustment costs

(panel (b)). The fragility indices are normalized by their standard deviation. The aggregate

investment responses are demeaned and expressed as percentage deviations from steady-

state levels. To control for variation in TFP levels across episodes, I include fixed effects

for each unique combination of prior and contemporaneous TFP states (At−1, At).
17

Panel (a) reveals a strong negative relationship between the contemporaneous invest-

ment response ∆It and the fragility index in the baseline model. When fitted to a linear

regression:

∆It (% w.r.t. s.s. response) =− 7.875 ∗ Fragilityt (s.d.) + ϵt, R2 = 0.677

(0.173) (1)

16If there are any responsiveness differences, they are from the endogenous aggregate state, the distribution
of firms, as the exogenous states are identical. The fragility index is used as a sufficient statistic for the
endogenous aggregate state in this experiment.

17The different colors of dots represent the different fixed-effect groups.
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Figure F.6: State-dependent responses of aggregate investment
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Notes: The vertical axis of the scatter plot is the instantaneous response of the aggregate invest-
ment to a negative one-standard-deviation TFP shock in percentage for baseline model (panel
(a)) and a model with convex and constant fixed adjustment costs (panel (b)), and the horizontal
axis is the fragility index measured in the unit of standard deviation from the average. In each re-
sponses, contemporaneous and one-period-prior aggregate TFP fixed effects are controlled. Using
the histogram method in Young (2010), firms are simulated for 5,000 periods (years) based on the
recursive competitive equilibrium. The fragility indices are calculated based on the distribution
of large firms.

This coefficient implies that a one-standard-deviation increase in fragility amplifies the

negative investment response by 7.875% relative to the steady-state response. In contrast,

the model with convex and constant fixed adjustment costs (panel (b)) exhibits a signifi-

cantly weaker relationship (significant at the 1% level), with a coefficient of -2.193. This

comparison demonstrates that the baseline model’s size-dependent adjustment costs gener-

ate substantially stronger endogenous fragility than canonical models.

To assess the output implications of this fragility-driven investment channel, I exam-

ine how fragility affects next-period output through the capital accumulation mechanism.

When a negative TFP shock coincides with high fragility, the amplified investment decline

reduces the future capital stock, resulting in a decline in future output. Following the same

identification strategy:

∆Yt+1 (p.p. w.r.t. s.s.) =− 0.322 ∗ Fragilityt (s.d.) + ϵt, R2 = 0.631

(0.008) (2)
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A one-standard-deviation increase in fragility reduces next-period output by 0.322 per-

centage points through the investment channel. Figure F.7 is a scatter plot of fragility

index (horizontal axis) and the aggregate output response (vertical axis), which visualizes

the negative relationship.

Figure F.7: State-dependent responses of aggregate output

-3 -2 -1 0 1 2 3
Fragility

t
 (s.d)

-1

-0.5

0

0.5

1

1.5
 Y

t (
%

)

Notes: The vertical axis of the scatter plot is the instantaneous response of the aggregate output
to a negative one-standard-deviation TFP shock in percentage point, and the horizontal axis is the
fragility index measured in the unit of standard deviation from the average. In each responses,
contemporaneous and one-period-prior aggregate TFP fixed effects are controlled. Using the
histogram method in Young (2010), firms are simulated for 5,000 periods (years) based on the
recursive competitive equilibrium. The fragility indices are calculated based on the distribution
of large firms.

The comparison across models (Table G.8) further confirms that the baseline model gen-

erates the strongest synchronization patterns and most pronounced aggregate nonlinearities,

with all models calibrated to identical targets except for the cross-sectional elasticity ratio.

F.2 State dependence - comparison across the firm size

Having established that fragility generates state-dependent aggregate responses, I now ex-

amine which firms drive this effect. Figure F.8 shows the scatter plot of the instantaneous

group-level investment responses to a one-standard-deviation negative TFP shock (vertical

axis) over the fragility variation in the horizontal axis constructed by large firms (panel

(a)) and small firms (panel (b)). As can be seen from the figure, the negative relationship

between the responsiveness and the synchronization (fragility) is significantly starker for

large firms than for small firms.

23



Figure F.8: State-dependent responses of investments: large vs. small
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Notes: The vertical axis of the scatter plot is the instantaneous response of the aggregate
investment to a negative one-standard-deviation TFP shock in percentage for large firms (panel
(a)) and small firms (panel (b)), and the horizontal axis is the fragility index measured in the unit
of standard deviation from the average. In each responses, contemporaneous and one-period-prior
aggregate TFP fixed effects are controlled. Using the histogram method in Young (2010), firms
are simulated for 5,000 periods (years) based on the recursive competitive equilibrium.
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G Synchronization and the aggregate dynamics

Synchronization When an aggregate TFP shock hits, firms accelerate or postpone their

investment plans based on their location in the Ss cycle. For example, when a negative

aggregate TFP shock hits, firms that are supposed to implement lumpy investments tend

to postpone the plan due to the expected underwhelming economic situation. Then, in-

vestment timings of these postponing firms and those who plan to invest in the subsequent

periods become synchronized. To see this effect, I consider an aggregate negative unex-

pected TFP shock (MIT shock) to the stationary equilibrium and see how the distribution

over the years from the last lumpy investments evolve after the shock. Due to the stochastic

nature of the Ss band in the model, there is no deterministic trigger point (small s) in the

Ss cycle. However, firms with similar individual states tend to invest at a similar timing

after their own last lumpy investments. If it has been a long period since a firm made the

last investment, the firm is likely closer to the trigger point, and vice versa. Thus, the

years from the last lumpy investments capture the location in the Ss band. To ease the

illustration, I will refer to τ as the years from the last lumpy investments.

Figure G.9: Time path of distributions over the Ss band after an MIT shock
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(b) t = 2
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(c) t = 5
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(d) t = 8
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(e) t = 11

Notes: This figure plots the time evolution of the probability density deviations from the stationary equi-
librium counterpart after a negative aggregate TFP shock at the stationary equilibrium. Each panel’s
horizontal axis is for the time (years) from the last lumpy investment, and the vertical axis is for the
probability density deviation (a simple difference from the stationary equilibrium’s density function).

Figure G.9 plots the time evolution of the large firms’ probability mass over the domain

of the time from the last lumpy investment, where the vertical axis shows a level deviation
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(the difference in the probability mass) from the stationary equilibrium’s counterpart. Thus,

when the shock hits (t = 1, panel (a)), the distribution distance does not deviate from zero,

meaning the distribution is the same as in the stationary equilibrium. Due to the expected

low marginal profit out of the investment, many firms delay the investment plan leading to

a sharp drop in the density for τ = 1 at period t = 2 (panel (b)), while the delaying firms

contribute to the increase in the probability masses for τ > 1. Then, as time goes by, the

synchronized stopping mass is diluted, and in around 8 years, the delayed investment plans

tend to form a surge of lumpy investments as can be seen from panel (d) and (e). After

around 25 years, the distribution moves back close to the stationary distribution.

Figure G.10: Distributions over the Ss band: large vs. small
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(a) Large firms
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(b) Small firms

Notes: The solid line is the probability density deviation from the stationary equilibrium coun-
terpart for the highest fragility state in the simulated recursive competitive equilibrium. The
dashed line is for the lowest fragility state.

Figure G.10 compares the synchronization pattern between large and small firms for

high and low fragility periods. As can be seen from the figure, the distributional difference

between the highest and lowest fragility states is starker for large firms than small firms,

indicating large firms’ stronger synchronization. During the period of highest fragility, a

significant portion of large firms have recently completed lumpy investments, indicating that

many firms are further away from the trigger point in the Ss band. Specifically, the average

time since the last spike is 22% lower than the stationary equilibrium level in high-fragility

26



periods, while it is 16% higher in low-fragility periods. Small firms display significantly

dampened synchronization compared to large firms – in their highest and lowest fragility

states, the average years from the last spike are 9.78% lower and 2.65% higher than steady

state, respectively.

Aggregate impacts of the synchronization The synchronization patterns docu-

mented above have significant aggregate implications. When large firms synchronize their

investment timing, this coordination survives general equilibrium forces due to their low

interest-rate sensitivity, generating persistent fluctuations in aggregate investment. Figure

G.11 plots the impulse responses of the spike ratios (panel (a)) and iit/kit (panel (b)) ra-

tios in different models to a negative one-standard-deviation aggregate TFP shock. The

impulse response is computed from the perfect-foresight transition path. The spike ratio is

as defined in main text. Each variables’ time path is normalized by its volatility (standard

deviation) in the simulated path using the global nonlinear solution.

As shown in panel (a), the large firms’ spike ratio in the baseline model (solid line)

surges after a negative aggregate TFP shock, displaying a synchronization (surge) of the

investment timings among large firms. This magnitude of the large firms’ synchronization

is substantially stronger in the baseline model (solid line) than the model with the linearly

size-dependent fixed adjustment cost (dashed line) and the constant fixed adjustment cost

(dash-dotted line). On the other hand, the small firms’ synchronization (dotted line) is

weaker than the large firms’ in the baseline model. Similar synchronization patterns are

observed in the iit/kit ratios (panel (b)).

This phenomenon happens because a negative aggregate TFP shock triggers a syn-

chronous stop of large-scale investment projects. Then, as the TFP gradually recovers over

the transition path, large firms tend to implement large-scale investments at a similar time

to the others. If a general equilibrium effect is strong enough, these synchronized lumpy

investment timings are supposed to be smoothed. However, the baseline’s large firms are in-

elastic to the general equilibrium effect, so the synchronization survives even in the general

equilibrium environment.
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Figure G.11: Synchronization after a negative aggregate TFP shock
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(a) Spike ratio
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(b) Average iit/kit ratio

Notes: The impulse responses of spike ratio (panel (a)) and average i/k (panel (b)) ratio are
obtained from the transition dynamics to the stationary equilibrium allocations after an unex-
pected negative one-standard-deviation aggregate TFP shock. Each time series is demeaned by
the stationary equilibrium levels and normalized by its standard deviation computed from the
global solution.

Next, I analyze this synchronization affects the firm and aggregate-level allocations over

the business cycle. Table G.8 reports the large firms’ synchronization patterns over the

business cycle across the models (the first block) and the corresponding high-order moments

of the aggregate investment (the second block) and outputs (the bottom block). All the

moments are computed based on the global nonlinear solution, which I elaborate on in the

following section.

The first two rows report the persistence of the time series of the spike ratio, which is

obtained by fitting the series into the AR(1) process. The spike ratio is most persistent

in the baseline model, and its persistence decreases as the order of the size dependence in

the fixed adjustment cost decreases. Once the general equilibrium effect is lifted by fixing

the stochastic discount factor at the steady state (the second row), the persistence ranking

is shuffled, and the model with the constant fixed adjustment cost features the strongest

persistence. This result shows that the large firms’ low sensitivity to the general equilibrium

effect in the baseline model is the key to the persistent synchronization. On the other hand,

the small firms’ persistence of the synchronization is weakest in the baseline model (the
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third row).

The following rows in the first block show the high-order moments of the time series

of the large firms’ spike ratio. The spike ratio displays the largest positive skewness in

the baseline model. That is, the large firms tend to be more synchronized in the baseline

model than in the others. However, the model with the constant fixed adjustment cost

displays the largest skewness in the partial equilibrium. This shows that the low sensitivity

to the general equilibrium effect plays a crucial role in synchronizing large firms in the

baseline model. For the kurtosis, regardless of the general equilibrium effect, the baseline

model features the highest level, while the relative magnitude of the difference is not as

substantial as the skewness differences.

Table G.8: Large firms’ synchronization and the aggregate dynamics

baseline (ζ = 3.5) ζ = 2 ζ = 1 ζ = 0

Large firms’ spike ratio

Persistence - GE 0.769 0.745 0.737 0.735
Persistence - PE 0.751 0.746 0.752 0.762

cf. Small firms’ persistence - GE 0.649 0.671 0.690 0.706
Skewness - GE 0.354 0.230 0.195 0.215
Skewness - PE 0.595 0.550 0.586 0.678
Kurtosis - GE 3.235 3.073 2.963 2.935
Kurtosis - PE 5.149 4.947 4.889 4.808

Aggregate investment, log(It)

Skewness -0.124 -0.087 -0.063 -0.055
Kurtosis 2.934 2.904 2.887 2.880

Aggregate output, log(Yt)

Skewness -0.017 -0.009 -0.001 0.009
Kurtosis 2.878 2.875 2.875 2.877

Notes: The table reports the firm-level and aggregate-level statistics in the baseline model,
the models with quadratically and linearly size-dependent fixed costs, and the model with
a constant fixed adjustment cost.

In the following block, I report the high-order moments of the aggregate investment

over the business cycle. The aggregate investment displays the most negative skewness and

the greatest kurtosis in the baseline model. A similar pattern is observed for the output

dynamics reported in the bottom block.
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The compared models share the same model structure and are sharply calibrated based

on the same target moments except for the cross-section of the elasticity distribution across

the large and small firms. Therefore, given the assumption that the target moments are

correctly selected, the differences in the high-order moments in the aggregate allocations are

driven by the differences in the only unmatched moment: the cross-section of the elasticity

distribution. In the following sections, I elaborate further on how the aggregate investment

and output become more negatively skewed when the large firms’ interest elasticity is as

low as the observed level.
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H State-dependent interest elasticities of the investment growth

in the baseline model

H.1 State-dependent interest rate elasticity of aggregate investment

To study how the aggregate investment responds differently to the same interest shock

depending on the fragility state, I hit the economy at each period on the simulated path

with an unexpected interest rate shock and compute the contemporaneous response under

the partial equilibrium. I compute the elasticity by taking an average of the elasticities from

positive and negative 1 % interest rate shocks to account for the asymmetric responses.

Figure H.12: State-dependent semi-elasticities of aggregate investment
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Notes: The vertical axis of the scatter plot is the semi-elasticity of aggregate investment in
percentage point deviation from the average, and the horizontal axis is the fragility index in the
standard deviation from the average. For each elasticity, contemporaneous and one-period-prior
aggregate TFP fixed effects are controlled. Using the histogram method in Young (2010), firms are
simulated for 5,000 periods (years) based on the recursive competitive equilibrium. The fragility
indices are calculated based on the distribution of large firms.

Figure H.12 is the scatter plot of the interest elasticities of the aggregate investment in

relation to the fragility state. The horizontal axis is the fragility index normalized by the

standard deviation; the vertical axis is the interest elasticity in percentage deviation from

the steady-state level.18 According to the figure, there is a significant negative relationship

between the fragility and the interest elasticity of aggregate investment. By fitting the

18The prior and contemporaneous aggregate TFP levels (At−1, At) are controlled by teasing out the pair-
specific fixed effect, and the different colors of dots represent the different fixed-effect groups.
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relationship into linear regression, I obtain the following result:

∆Elasticityt (% w.r.t. s.s.) =− 3.350 ∗ Fragilityt (s.d) + ϵt, R2 = 0.689 (3)

(0.032)

One standard deviation increase in the fragility index decreases the interest elasticity of

aggregate investment by around 3.022% compared to the steady-state level. The intuitive

explanation for the result is that when the fragility index is high, there are not many

large firms that can flexibly participate in and out of large-scale investment. Therefore,

the aggregate investments’ responsiveness to the interest rate change decreases in a high-

fragility state. In Appendix F, I show that the state-dependent elasticity is driven by large

firms through the comparison with small firms’ effects.

When the fragility index increases by one standard deviation, large firms’ investment

elasticity decreases by around 5.257%. On the other hand, the same variation in the fragility

index decreases small firms’ elasticity by 1.244%, and the difference is statistically signif-

icant. This result shows that large firms dominantly drive the stark negative relationship

between the interest elasticities of the aggregate investments and the fragility index.

H.2 State-dependent elasticity: large vs. small firms

To verify that large firms drive interest elasticity fluctuations in aggregate investment, I

compute the elasticity variations separately for large and small firms. Figure H.13 is the

scatter plot of interest elasticities along with the fragility variation for large (panel (a))

and small firms (panel (b)). The negative relationship between the fragility index and the

elasticity is significantly stronger in large firms. When two different elasticities are fitted

into linear regression, the following relationship is obtained:
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Figure H.13: State-dependent semi-elasticities of investments: Decomposition
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(a) Large firms
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(b) Small firms

Notes: The vertical axis of the scatter plots is the semi-elasticity of large (panel (a)) and small
(panel (b)) firms’ investment in percentage point deviation from the average, and the horizontal
axis is the fragility index in the standard deviation from the average. For each elasticity, contem-
poraneous and one-period-prior aggregate TFP fixed effects are controlled. Using the histogram
method in Young (2010), firms are simulated for 5,000 periods (years) based on the recursive
competitive equilibrium. The fragility indices are calculated based on the distribution of large
firms.

∆ElasticityLarget (% w.r.t. s.s.) =− 5.257 ∗ Fragilityt (s.d) + ϵt, R2 = 0.655 (4)

(0.054)

∆ElasticitySmallt (% w.r.t. s.s.) =− 1.244 ∗ Fragilityt (s.d) + ϵt, R2 = 0.639 (5)

(0.013)
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I Additional tables and figures

I.1 Fixed parameters

Table I.9: Fixed Parameters

Parameters Description Value

Firm-side Fundamentals
α Capital share 0.2800
γ Labor share 0.6400
δ Depreciation rate 0.0900

Household
β Discount factor 0.9770

TFP Process
ρA Persistence of aggregate TFP 0.8145

Notes: The fixed parameters are chosen at the level widely used in the relevant literature. The
persistence of aggregate TFP is fixed at 0.8145 following Bachmann et al. (2013).
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I.2 Predictability for and by the fragility index

Table I.10: Predictability for and by the fragility index

Prediction for fragility by fragility

Dep. var. (s.d.): Fragilityt SRt gIt

# lags: h = 5 h = 4 h = 3 h = 2 h = 1 h = 0 h = 0

SRt−h (s.d.) 0.114 0.397 0.753 0.579 0.028
(0.166) (0.118) (0.081) (0.137) (0.176)

Fragilityt (s.d.) -0.389 -0.464
(0.216) (0.260)

Obs. 32 32 32 32 32 32 32
R2 0.378 0.495 0.806 0.631 0.367 0.371 0.192
Detrend Yes Yes Yes Yes Yes Yes Yes
Newey-West s.e. Yes Yes Yes Yes Yes Yes Yes

Notes: This table reports regression results for two exercises: (1) predicting the fragility index
using past spike ratios with lags of h = 1 to 5 years (columns 1-5), and (2) predicting contem-
poraneous spike ratio and aggregate investment growth using the fragility index (columns 6-7).
All variables are standardized. Dependent variables are detrended using polynomials of time.
Newey-West standard errors in parentheses.
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I.3 State-dependent sensitivity of the aggregate investment growth

Table I.11: State-dependent sensitivity of the aggregate investment growth: full table

Dependent variable: ∆log(It) (p.p.)

(−) OutputShockt (+) OutputShockt

Model Data Model Data

(1) (2) (3) (4) (5) (6) (7) (8)

Shockt 9.589 9.389 7.193 5.818 8.671 8.490 4.483 6.937
(0.083) (0.066) (1.213) (1.338) (0.084) (0.064) (1.123) (1.221)

Shockt 1.537 2.430 -2.011 -1.486
× Fragilityt (0.042) (1.311) (0.045) (0.495)

Constant Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2,296 2,296 16 16 2,706 2,705 18 18
R2 0.853 0.908 0.730 0.790 0.730 0.884 0.515 0.705
Adjusted R2 0.853 0.908 0.709 0.755 0.709 0.884 0.483 0.663

Notes: The dependent variable is the growth rate of aggregate investment. The independent variables are
output shocks obtained from fitting output series into an AR(1) process and the interaction between the
output shock and the fragility index. The fragility index is based on the years since the last lumpy investment
of large firms. The first two columns report the regression coefficients from the simulated data when the
negative output shock hits. The third and fourth columns report the regression coefficients using Compustat
data when the negative output shock hits. The fifth and sixth columns report the regression coefficients
from the simulated data when the positive output shock hits. The last two columns report the regression
coefficients using Compustat data when the positive output shock hits. The numbers in the brackets are
standard errors.
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I.4 Business cycle statistics

Table I.12: Business cycle statistics

Data Model

corr(Yt, Yt−1) 0.941 0.847
corr(It, It−1) 0.742 0.740
corr(Ct, Ct−1) 0.954 0.907
corr(It, Yt) 0.795 0.796
corr(Lt, Yt) 0.898 0.763
corr(Ct, Yt) 0.978 0.981
sd(Yt) 0.060 0.067
sd(It)/sd(Yt) 1.976 1.767
sd(Ct)/sd(Yt) 0.945 0.829

Notes: The business cycle statistics are obtained from the simulated data using the dynamic
stochastic general equilibrium allocations. All the variables are in log and linearly detrended.
The data counterpart is from National Income and Product Accounts (NIPA) data.
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I.5 Firm-level supporting evidence for the state dependence

This section reports firm-level evidence that large firms’ responsiveness to monetary policy

shocks becomes insignificant during high fragility periods. The regression setup follows

Table 2, where the first column reports results for high fragility periods and the second for

low fragility periods. High and low fragility periods are defined as the top 40% and bottom

40% of fragility index values in the sample.

The results show that large firms’ extensive-margin response to monetary policy is sta-

tistically insignificant during high fragility periods (-0.646 with the standard error of 0.547),

while it remains significant at the 10% level during low fragility periods (-0.945 with the

standard error of 0.543). This loss of statistical significance during high fragility periods

supports the model’s prediction that synchronized large firms become unresponsive to in-

terest rate changes when many are far from their investment triggers.

Table I.13: State-dependent extensive-margin investment sensitivities to the MP shocks

Dependent variable: I{ Iitkit > 0.2}

High fragility Low fragility

MPt -0.646 -0.945
(0.547) (0.543)

Obs. 15,963 13,434
R2 0.664 0.695
Firm FE Yes Yes
Sect.-year FE Yes Yes
Firm-level ctrl. Yes Yes
Two-way cl. Yes Yes

Notes: The independent variables include monetary policy shocks, fixed effects (firm and sector-
year), and firm-level control variables (lagged current account (ACTt−1), lagged total debt
(DTt−1), and operating profit (OIBDPt) normalized by lagged total asset (ATt−1), log of lagged
capital stock, and log of employment (EMPt)). The numbers in the bracket are the standard
errors. The standard errors are clustered two-way by firm and year.
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J Notes on the recursive competitive equilibrium

J.1 Value function normalization

I multiply p(S) = 1/C(S) on the both sides of line (16) to obtain

p(S)J(k, z;S) = p(S)(π(k, z;S) + (1− δ)k) (6)

+

∫ ξ

0
max {p(S)R∗(k, z;S)− p(S)w(S)F (k, ξ), p(S)Rc(k, z;S)} dGξ(ξ) (7)

I define the normalized value functions as follows:

J̃(k, z;S) := p(S)J(k, z;S) (8)

R̃∗(k, z;S) := p(S)R∗(k, z;S) (9)

R̃c(k, z;S) := p(S)Rc(k, z;S) (10)

It is necessary to check whether the recursive formulation naturally follows for the normal-

ized value functions. Using p(S)q(S, S′) = βp(S′),

R̃∗ = max
k′≥0

(−k′ − c(k, k′))p(S) + Ep(S)q(S, S′)J(k′, z′;S′) (11)

= max
k′≥0

(−k′ − c(k, k′))p(S) + Eβp(S′)J(k′, z′;S′) (12)

= max
k′≥0

(−k′ − c(k, k′))p(S) + βEJ̃(k′, z′;S′) (13)

Similarly,

R̃c = max
kc∈Ω(k)

(−kc − c(k, kc))p(S) + βEJ̃(kc, z′;S′). (14)

Therefore, the recursive form is preserved for the normalized value functions. As in Khan

and Thomas (2008), the recursive form based on the normalized value function eases com-

putation of the dynamic stochastic general equilibrium because the price, p, depends only
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on the current aggregate state variable, S.

J.2 Recursive competitive equilibrium

In this section, I define the recursive competitive equilibrium in the economy.

(gc, ga, glH , gk∗ , gkc , gξ∗ , gl, Ṽ , J̃ , R̃
∗, R̃c, p, w,G,H) is a recursive competitive equilibrium if

the following conditions are satisfied.

1. gc, glH , Ṽ , and ga, solve the household’s problem.

2. gk∗ , gkc , gξ∗ , gl, J̃ , R̃
∗, and R̃c solve a firm’s problem.

3. Market Clearing:

(Labor Market) glH(Φ;S) =

∫ (
gl(k, z;S)

+

(
gξ∗(k, z;S)

ξ

)(
gξ∗(k, z;S)

2

)
kζ

)
dΦ

(Product Market) gc(Φ;S) =

∫ (
zAkαgnd

(k, z;S)γ

−
(
(gk∗(k, z;S)− (1− δ)k) + c(k, gk∗(k, z;S))

)
× gξ∗(k, z;S)

ξ

−
(
(gkc(k, z;S)− (1− δ)k) + c(k, gkc(k, z;S))

)
× 1− gξ∗(k, z;S)

ξ

)
dΦ

4. Consistency Condition:19

(Consistency) GΦ(Φ) = H(Φ) = Φ′, where for ∀K ′ ⊆ K and z′ ∈ Z,

Φ′(K ′, z′) =

∫
Γz,z′

(
I{gk∗(k, z;S) ∈ K ′}gξ

∗(k, z;S)

ξ

+ I{gkc(k, z;S) ∈ K ′}1− gξ∗(k, z;S)

ξ

)
dΦ

19K and Z are the supports of the marginal distributions of capital and productivity induced from Φ.
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K Robustness check and comparative statics

In this section, I check the robustness of the key empirical and theoretical results. Sections

K.1 and K.2 replicate the empirical analysis with spike cutoffs at 18% and 22% instead of

the baseline 20%. Specifically, Figure 1 and Figure 2 in the main text, as well as Figure

A.1 and Table I.10 in the Appendix, are replicated with these alternative thresholds. All

results remain robust across different thresholds, and the fragility index’s predictive power

for contemporaneous investment variables becomes even weakly stronger with the 18%

threshold.

Section K.3 examines how the state-dependent investment response varies with the

size-dependence parameter ζ. Table B.2 shows that different ζ values generate different

cross-sectional interest elasticity patterns. The state dependence exhibits a monotonic re-

lationship with ζ: higher values strengthen the fragility mechanism. For example, ζ = 3.7

produces results similar to the baseline ζ = 3.5, while lower values like ζ = 0 substantially

weaken the state-dependent response, confirming that the mechanism requires sufficient size

dependence to operate.

K.1 Robustness check: spike thresholds at 18%

Figure K.14: Three surges of large firms’ lumpy investments before recessions
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Notes: The firm-level large-scale investment is defined as an investment greater than 20% of the existing
capital stock. The solid line plots the time series of the fraction of large firms making large-scale investments.
The grey areas indicate the NBER recession periods.
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Figure K.15: Conditional heteroskedasticity of aggregate investment
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Notes: The estimated standard deviation of the residual (y-axis) is obtained from fitting the
aggregate investment-to-capital ratio (%) into an autoregressive process with four lags. The
average lagged spike ratio of large firms (%) is obtained by averaging the most recent past two
spike ratios for each observation of residualized investments. The years overlaid on the dots are
the observed years of the residualized investment-to-capital ratios.

Figure K.16: Fragility, spike ratio, and the aggregate investments
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Notes: The solid line plots the time series of the spike ratio. The dashed line is the time series of
the fragility index. The dotted line is time series of the aggregate investment growth rate.
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Table K.14: Predictability for and by the fragility index

Prediction for fragility by fragility

Dep. var. (s.d.): Fragilityt SRt gIt

# lags: h = 5 h = 4 h = 3 h = 2 h = 1 h = 0 h = 0

SRt−h (s.d.) 0.153 0.442 0.782 0.536 0.079
(0.166) (0.119) (0.091) (0.148) (0.177)

Fragilityt (s.d.) -0.485 -0.467
(0.196) (0.249)

Obs. 32 32 32 32 32 32 32
R2 0.363 0.501 0.809 0.566 0.348 0.438 0.199
Detrend Yes Yes Yes Yes Yes Yes Yes
Newey-West s.e. Yes Yes Yes Yes Yes Yes Yes

Notes: This table reports regression results for two exercises: (1) predicting the fragility index
using past spike ratios with lags of h = 1 to 5 years (columns 1-5), and (2) predicting contem-
poraneous spike ratio and aggregate investment growth using the fragility index (columns 6-7).
All variables are standardized. Dependent variables are detrended using polynomials of time.
Newey-West standard errors in parentheses.
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K.2 Robustness check: spike thresholds at 22%

Figure K.17: Three surges of large firms’ lumpy investments before recessions
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Notes: The firm-level large-scale investment is defined as an investment greater than 20% of the existing
capital stock. The solid line plots the time series of the fraction of large firms making large-scale investments.
The grey areas indicate the NBER recession periods.

Figure K.18: Conditional heteroskedasticity of aggregate investment
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Notes: The estimated standard deviation of the residual (y-axis) is obtained from fitting the
aggregate investment-to-capital ratio (%) into an autoregressive process with four lags. The
average lagged spike ratio of large firms (%) is obtained by averaging the most recent past two
spike ratios for each observation of residualized investments. The years overlaid on the dots are
the observed years of the residualized investment-to-capital ratios.
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Figure K.19: Fragility, spike ratio, and the aggregate investments

1985 1990 1995 2000 2005 2010 2015

−
4

−
3

−
2

−
1

0
1

2

Year

s.
d.

Spike ratio
Fragility
Agg. Inv. growth

Notes: The solid line plots the time series of the spike ratio. The dashed line is the time series of
the fragility index. The dotted line is time series of the aggregate investment growth rate.

Table K.15: Predictability for and by the fragility index

Prediction for fragility by fragility

Dep. var. (s.d.): Fragilityt SRt gIt

# lags: h = 5 h = 4 h = 3 h = 2 h = 1 h = 0 h = 0

SRt−h (s.d.) 0.114 0.368 0.736 0.616 0.137
(0.162) (0.119) (0.072) (0.134) (0.178)

Fragilityt (s.d.) -0.235 -0.386
(0.228) (0.249)

Obs. 32 32 32 32 32 32 32
R2 0.418 0.516 0.816 0.691 0.356 0.371 0.144
Detrend Yes Yes Yes Yes Yes Yes Yes
Newey-West s.e. Yes Yes Yes Yes Yes Yes Yes

Notes: This table reports regression results for two exercises: (1) predicting the fragility index
using past spike ratios with lags of h = 1 to 5 years (columns 1-5), and (2) predicting contem-
poraneous spike ratio and aggregate investment growth using the fragility index (columns 6-7).
All variables are standardized. Dependent variables are detrended using polynomials of time.
Newey-West standard errors in parentheses.

45



K.3 Sensitivity check: size curvature parameter in the fixed cost

Figure K.20: Semi-elasticities of investments across different calibrations
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(a) ζ = 3.7
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(b) ζ = 2
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(c) ζ = 1
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(d) ζ = 0

Notes: The solid line is the impulse response to the TFP shock when the fragility index is two standard
deviations above the stationary equilibrium level. The dashed line is for the state where the fragility index
is two standard deviations below the stationary equilibrium.
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