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Abstract

This paper studies how large firms’ synchronized lumpy investments endogenously
shape an economy’s fragility to negative TFP shocks. I develop a heterogeneous-firm
real business cycle model that matches the empirical interest elasticities of investment
for both large and small firms. In the model, large firms’ lumpy investments become per-
sistently synchronized due to their low sensitivity to general equilibrium effects, generat-
ing investment surges. Following these surges, TFP-induced recessions are particularly
severe, and the semi-elasticity of aggregate investment drops significantly, consistent
with the data.
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1 Introduction

This paper studies an economy’s endogenous fragility to a negative TFP shock shaped by
large firms’ investment dynamics. Large firms’ investments are lumpy, large in scale, and
inelastic to changes in the interest rate. These distinctive features generate an endogenous
state dependence in the economy through their synchronized large-scale investments, which
has been studied only scantily in the literature. Using a calibrated heterogeneous-firm
business cycle model, I substantiate that this channel leads to a significant variation in the
aggregate allocations’ sensitivity to the aggregate TFP shocks.

The contribution of this paper is threefold. First, this paper documents and quantifies
novel state dependent investment dynamics driven by large firms. Using firm-level and
macro data, I demonstrate that aggregate investment sensitivity to negative TFP shocks
significantly increases when a great portion of large firms have recently completed lumpy
investments. I identify the low interest elasticity of large firms as the key mechanism driv-
ing this observed state dependence. Quantitative analysis reveals that approximately 23%
of investment rate declines during recent recessions can be attributed to fluctuations in
large firms’ synchronized lumpy investments. A one-standard-deviation increase in past
synchronization reduces the aggregate investment semi-elasticity to interest rate changes
by around 3.4% compared to steady-state levels. Furthermore, I show that such synchro-
nization emerges endogenously within the recursive competitive equilibrium (RCE) path,
enabling analysis of state dependence without requiring multiple steady states exogenously.

Second, this paper develops a fragility index that measures the economy’s vulnerability
to negative TFP shocks through their effects on aggregate investment and output. The
index is calculated from the proportion of large firms that have recently completed lumpy
investments, effectively capturing the degree of recent synchronization. This index has three
key advantages: 1) it relies solely on data from large firms, 2) depends only on past obser-
vations, and 3) possesses predictive power for contemporaneous investment responsiveness.

These features make the index particularly valuable for practical applications, as large firms’



investment activities are easily traceable through public financial disclosures, eliminating
the need to monitor the entire universe of firms.

Third, this paper develops a heterogeneous-firm model that correctly captures the em-
pirically observed interest elasticity patterns across firm sizes. Standard models with fixed
and convex adjustment costs fail in a crucial dimension: when calibrated to match aggre-
gate moments, they counterfactually predict that large firms are more responsive to interest
rates than small firms — the opposite of what we observe in the data. This inversion oc-
curs because standard fixed adjustment costs are too small relative to large firms’ scale. 1
address this by introducing size-dependent fixed costs with a curvature parameter ¢ that
governs how the adjustment costs increase with firm size, microfounded as coordination
costs across establishments within multi-establishment firms. When calibrated to match
the cross-sectional elasticity evidence (¢ = 3.5), the model correctly generates interest-
inelastic large firms and interest-elastic small firms. This correct specification produces
substantially greater nonlinearity and state dependence in aggregate investment dynamics
compared to existing models.

A key equilibrium prediction of my model is the synchronization of large firms’ in-
vestment timings across the business cycle. When negative aggregate TFP shocks occur,
firms tend to simultaneously pause lumpy investment projects as persistent poor economic
prospects make these investments unattractive. This simultaneous pause leads to synchro-
nized implementation in subsequent periods — analogous to pedestrians stopping together
at a red light and proceeding in unison when it turns green.! In standard models with
strong general equilibrium smoothing forces, as in Khan and Thomas (2003, 2008), such
synchronization tends to be dissipated by the general equilibrium effect, which effectively
disperses investment timings. However, in my baseline model, the low interest elasticity
of large firms weakens this smoothing mechanism, allowing surges of synchronized lumpy
investments even in general equilibrium.

This endogenous synchronization drives state-dependent investment sensitivity. During

While positive shocks can also cause synchronization, they are less effective since accelerating investments
requires paying fixed adjustment costs, whereas pausing is costless.



normal times when firms are dispersed across their Ss cycles, negative TFP shocks still
trigger some investment: large firms near their lumpy investment thresholds (Ss triggers)
proceed with planned adjustments since expected benefits exceed costs despite poor macroe-
conomic conditions. This continued investment partially buffers the negative shock’s impact
through capital accumulation. However, following a surge of lumpy investments, most large
firms have recently completed their adjustments and thus remain far from their Ss triggers
(early in their Ss cycles). With fewer firms positioned near investment thresholds, the same
negative TFP shock is less buffered by offsetting investments, resulting in sharper aggregate
investment declines and deeper recessions. This variation in the distribution of firms across
their Ss cycles — not just their average position — constitutes the primary mechanism
behind state-dependent investment responsiveness.

To solve the model, I employ a sequence-space-based nonlinear global solution method
developed concurrently in Lee (2025). This approach eliminates the need to functionally
specify the law of motion for endogenous aggregate states. This methodological improve-
ment is crucial because the surges of lumpy investments — only partially smoothed by
general equilibrium effects — create inherently nonlinear dynamics in aggregate states that
resist functional form specification required by traditional state-space methods (Krusell
and Smith, 1997, 1998). The method avoids these limitations while efficiently comput-
ing global nonlinear solution paths without requiring additional computational loops for
period-by-period market clearing conditions. Based on this global solution, I provide a
sharp quantification of endogenous state dependence in aggregate investment fluctuations
and conduct generalized impulse response analyses (Koop et al., 1996; Andreasen et al.,
2017).

In the model, aggregate investment’s interest elasticity varies with the fragility index
throughout the business cycle. This finding suggests that monetary policy effectiveness di-
minishes following surges in large firms’ lumpy investments. It also provides a microfounded
explanation for why monetary policy has been less effective during recessions, particularly

through the business investment channel, as documented by Tenreyro and Thwaites (2016).



I validate these policy implications by analyzing the corresponding generalized impulse re-
sponse functions (GIRF) for an extended model with exogenous stochastic discount factor

shifters.

Related literature This paper is related to the literature that studies how firm-level
investments shape the aggregate investment over the business cycle. The literature inves-
tigated under which conditions the firm-level nonlinear investment dynamics are relevant
to the aggregate investment dynamics (Caplin and Spulber, 1987; Caballero and Engel,
1993; Elsby and Michaels, 2019) and its macroeconomic implications over the business cy-
cle (Caballero and Engel, 1991, 1999; Cooper et al., 1999). Building upon these findings,
the recent strands of the literature have studied the rich heterogeneous-firm environments,
of which the complicated endogenous distributional dynamics are summarized by the suffi-
cient statistics (Baley and Blanco, 2021) based on the novel analytical framework (Alvarez
and Lippi, 2022).

My paper’s fragility index builds upon the sufficient statistic approach by Bachmann
et al. (2013) and Baley and Blanco (2021). Similar to the sufficient statistics, the fragility
index is constructed from the cross-sectional firm-level data and captures how large a portion
of firms are close to the re-adjustment point in the Ss cycle. However, the fragility index is
based on the distribution of large firms instead of the entire distribution. Also, my paper
analyzes the endogenous state dependence predicted by the fragility index using a global
nonlinear solution method, away from the stationary equilibrium.

An unsettled debate yet in the literature is the role of general equilibrium effect in
neutralizing the firm-level lumpy adjustment patterns. Using a canonical model with a
fixed adjustment cost, Thomas (2002) has shown that the general equilibrium effect almost
fully neutralizes the firm-level lumpiness once aggregated. Khan and Thomas (2003, 2008)
have shown that the inclusion of the firm-level heterogeneity does not mitigate the strong
neutralizing force of the general equilibrium. According to House (2014), this is due to the

near-infinite interest elasticity of the firm-level capital adjustment in the extensive margin



in the models with the fixed adjustment cost.

To this point, Gourio and Kashyap (2007) shows that the close-to-perfect neutralization
is not a generic nature of the general equilibrium, and it depends on the parametric setup
in the model such as the assumption on the distribution of the fixed adjustment cost.
Bachmann et al. (2013) shows that when the maintenance investment demand is considered,
the general equilibrium effect cannot perfectly smoothen the lumpiness of the aggregate
investments, leading to the state-dependent responsiveness. Their firm-level maintenance
demand essentially lowers the interest elasticity of investment, which weakens the general
equilibrium effect. Similarly, in the models of Winberry (2021) and Koby and Wolf (2020),
the firm-level investments feature realistic interest elasticity of investment on average, due
to the presence of the convex adjustment cost, leading to the nonlinear aggregate investment
dynamics.

Related to this literature, my paper shows that the models with plain-vanilla fixed
and convex adjustment costs flip the cross-sectional ranking of the elasticities between the
small and large firms. Therefore, the nonlinearity in the aggregate dynamics studied in
the existing models has been counterfactually driven by the non-smoothed small firms’
investments rather than the large firms’ investments. I show that once the cross-sectional
ranking is corrected, the state dependence in the aggregate investment dynamics becomes
substantially stronger due to the unsmoothed large firms’ lumpy investments.?

My paper’s key mechanism is closely related to the investment hangover studied in
Rognlie et al. (2018). Their model predicts that the investment response is state-dependent
and that a deep and prolonged drop in investment can happen after the over-accumulation
of capital stock. Building on this insight, I demonstrate that capital stock surges lead to
varying hangover intensities depending on the investment elasticity of firms driving the
preceding surge. When surges are primarily driven by interest-inelastic large firms, the

hangover effect becomes more severe — corresponding to the high fragility state in my

2This nonlinear effect is significantly large even if the compared models share the same average interest
elasticity at the firm level as the baseline at the steady state. That is, in the nonlinear model, the cross-
section of the elasticity matters on top of the average elasticity.



framework. The lumpiness of firm-level investment generates slow recovery as large firms
that drove the preceding surge remain inactive during their Ss cycle. Importantly, I show
that this pattern of surges followed by deep recessions emerges endogenously within the
recursive competitive equilibrium.

Lastly, this paper is related to the literature studying the state-dependent effectiveness
of monetary policy. Vavra (2014) has studied the state-dependent monetary policy effec-
tiveness based on the volatility state: high volatility lowers the effectiveness due to the
increased aggregate price flexibility. Berger et al. (2021) has shown that the monetary pol-
icy is path dependent due to the household-level mortgage prepayment channel. The most
closely related paper to my paper is Tenreyro and Thwaites (2016), which shows that busi-
ness investment and durables expenditure are less responsive to monetary policies during
recessions. Related to this, Gnewuch and Zhang (2025) shows that when inelastic old firms
take a greater portion of the market, such as in downturns, the effectiveness of monetary
policy declines. My paper shows that the interest-elasticity of aggregate investment signif-
icantly decreases in the fragility index. This provides a microfounded explanation of why
monetary policy has not been effective during the past recessions that were preceded by the

surges of large firms’ lumpy investments.

2 Motivating facts and empirical analysis

2.1 Data and the definitions

In this section, I empirically analyze the cyclical pattern of large firms’ lumpy investments.
I use the U.S. Compustat data for the firm-level empirical analysis. While Compustat data
covers only public firms, this limitation is not concerning because the focus is on large
firms, most of which are listed. Throughout the empirical analysis, large firms are defined
as firms that hold capital stocks greater than the 40th percentile of the capital distribution
in each industry. This percentile is calculated within each two-digit NAICS code in the

Compustat data. The firm-level real capital stock is obtained by applying the perpetual



inventory method to deflated net investment. The net investment is obtained from the lag
difference of the balance sheet item Property, Plant, and Equipment (Net).? The industry
is categorized by the first two-digit NAICS code.* The choice of the 40th percentile is for
consistency with the definition in Zwick and Mahon (2017), of which the estimated interest
elasticity is one of the main calibration targets of my baseline model.” The sample period
covers from 1980 to 2016. The further detailed description of the data and variables is

available in Appendix A.

2.2 Surges of large firms’ lumpy investments and the fragility index

In the following analysis, I empirically analyze the relationship between large firms’ lumpy
investments and the timing of recessions. I define an investment spike as a firm-specific event
where a firm makes a large-scale investment greater than 20% of the firm’s existing capital
stock.% I refer to these investment spikes as lumpy investments or capital adjustments in

the extensive margin interchangeably. Then, I define spike ratio as follows:

Z H{iit/kit > 0.2}
1€J

" # of j-type firms at ¢’ J € {small, large} (1)

Spike ratio;; :

The numerator counts all the instances of investment spikes from firm type j € {small, large}
at time ¢, and it is normalized by the total number of j-type firms. The spike ratio captures
the degree of investment timing synchronization.

Figure 1 plots the time series of the spike ratio of large firms. On average, 9.2% of large

firms adjust their existing capital stocks in the extensive margin in a year. As can be seen

3The investment does not include intangible components.

41f only SIC code is available for a firm, I imputed the NAICS code following online appendix D.2 of
Autor et al. (2020). If both NAICS and SIC are missing, I filled in the next available industry code for the
firm.

°In Zwick and Mahon (2017), large and small firms are defined by the cutoffs of (15.4M, 48.8M) in
terms of sales in the years 1998 through 2000 and 2005 through 2007 (Table B.1, panel (d)). I compute the
corresponding capital size cutoffs in Compustat.

520% cutoff is from the literature that studies the role of non-convex adjustment cost in the firm dynamics
(Cooper and Haltiwanger, 2006; Gourio and Kashyap, 2007; Khan and Thomas, 2003, 2008). If a firm’s
acquired capital stock is greater than 5% of existing capital stock in a certain year, I rule out the observation
from the sample due to possible noise in the reported items in the balance sheet during the acquisition year.
Appendix K includes robustness checks for different cutoffs of 18% and 22% for the investment spikes.



Figure 1: Three surges of large firms’ lumpy investments before recessions
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Notes: The firm-level large-scale investment is defined as an investment greater than 20% of the existing
capital stock. The solid line plots the time series of the fraction of large firms making large-scale investments.
The grey areas indicate the NBER recession periods.

from Figure 1, since 1980, there have been only four periods (1980, 1996, 1998, and 2007)
where the fraction of large firms making spiky investments surged beyond one standard
deviation. Three out of the four events were followed by recessions within two years.

Conversely, there were four recessions in the U.S. over the same period, and three out of
four recessions were preceded by surges in large firms’ lumpy investments. The exception
was the recession in 1990, and it was the mildest recession among the four recessions.

Consistent with this pattern, I show that aggregate investment rate is conditionally
heteroskedastic on the average lagged spike ratio of large firms in Appendix A.1. That is,
the residualized volatility of aggregate investment rate is high if a great portion of large
firms have recently made lumpy investments synchronously.

Fragility index Motivated from the investment surges preceding the recessions, 1
introduce a fragility index that captures the fraction of large firms that have recently com-

pleted large-scale investments:

I{s; <sSHH{K; k
Fragility, ::z {sit < 5}k > k) (2)

Z H{k‘lt > E}

where s;; is the time from the last lumpy investment of firm ¢; § is the time threshold for

si¢ to be counted as a recent event; k is the size threshold of large firms.”

"The median duration between two lumpy investments is around 6 years. In the regression that includes
the fragility index, reported in Table 5, I found 5 = 3 maximizes the fitness of the regression. Thus, in the



Figure 2: Fragility, spike ratio, and the aggregate investments
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Notes: The solid line plots the time series of the spike ratio. The dashed line is the time series of
the fragility index. The dotted line is time series of the aggregate investment growth rate.

When a great fraction of large firms have just finished a large-scale investment, a rel-
atively small fraction of large firms are willing to make another round subsequently. This
occurs because firm-level lumpy investment entails a fixed adjustment cost. Therefore, there
is a lead-and-lag relationship between the spike ratio and the fragility index, as can be seen
from Figure 2. When the fragility index is regressed on the three-year lagged spike ratio,
the coefficient is 0.75 (statistically significant at the 1% level).® Because large firms’ lumpy
investments comprise a substantial portion of aggregate investment, the spike ratio displays
significant positive co-movement with aggregate investment growth. The fragility index’s
lead-and-lag relationship with the spike ratio naturally generates predictability of aggregate
investment dynamics.

A one-standard-deviation increase in the fragility index is associated with a 0.46 stan-
dard deviation decrease in investment growth (statistically significant at the 10% level),
indicating that the predetermined fragility index negatively predicts contemporaneous in-
vestment growth rates.” The full regression results are available in Appendix 1.2. The

calibrated heterogeneous-firm business cycle model developed later explains the economic

following analysis, I use 5 = 3 for the fragility index. The main results are not significantly affected by the
choice of s.

8The correlation is strongest with a three-year lag. Table 1.10 reports the full regression results with
different lags.

9The limited sample size (n & 30) may have affected the statistical power.

10



mechanisms underlying this predictability and analyzes how it interacts with exogenous

TFP fluctuations.

2.3 How different are the large firms’ investments from the small firms?

This section compares the lumpy investment patterns and investment elasticities between
large and small firms.

Lumpiness Table 1 reports the inaction-related moments in the first part and the
moments based on lumpy investments in the second part. The time to lumpy investment is

defined as the time distance between two neighboring lumpy investments.

Table 1: Comparison of lumpy investment patterns between large and small firms

Large Small

Inaction moments (all in yrs.)

Unconditional mean of time to lumpy investment 6.892 6.460
(0.148) (0.191)
Mean of average firm-level time to lumpy investment 7.687 6.933

(0.196)  (0.245)

Lumpy investment moments (all in percentage)

Dollar share of lumpy investments in total investments 21.050  28.360
(2.520)  (2.790)
Average spike ratio 9.192 16.813
(0.427)  (0.924)

Notes: The statistics are from the US Compustat firm-level data. The numbers in the bracket
are heteroskedasticity and autocorrelation consistent (HAC) standard errors.

The first part of the table shows that large firms’ Ss cycle is slightly longer than that
of small firms, as their unconditional and cross-sectional means of firm-level time to lumpy
investments show. The second part of the table shows that small firms’ lumpy investments
account for a greater portion of total investments than large firms. However, large firms’
lumpy investments still account for 21% of the entire investments. The spike ratio defined
in Equation (1) is smaller for large firms than small firms, which is consistent with the
inaction moments that indicate large firms’ lumpy investments feature a longer Ss cycle.

Therefore, large firms’ lumpy investments are less frequent but substantially large in size.

11



If a lumpy investment is made only at an establishment level, large firms that own many
establishments should display a smoothed investment pattern. However, the statistics above
show that large firms’ investments are also lumpy, and their Ss cycle tends to be slightly
lengthier than that of small firms.

The observed lumpiness in large firms’ capital adjustment likely stems from real frictions
rather than financial constraints. Since large firms typically face fewer financial constraints
than small firms, their lumpy investment patterns suggest the presence of real adjustment
costs even with good access to capital markets. This motivates this paper’s focus on un-
derstanding how these real frictions shape investment responses to economic conditions.

Interest elasticities I empirically estimate the elasticity of firm-level investment us-
ing firm-level balance sheet data and monetary policy shocks from the literature. I estimate
the elasticities of small and large firms’ spike ratios (extensive margin) in addition to gross
investment, which I use to guide my baseline model to capture the empirically-supported
investment patterns. I use the following empirical specification, separately for large and

small firms:

f(kit, kit41) = BM P, + o + oy + Controlsy + €,

where M P; is the monetary policy shock; «; is firm fixed effect; ayy is sector-year fixed
effect. The control variables include lagged current account (ACT;_1), lagged total debt
(DTi—1), and operating profit (OI BDP;) normalized by lagged total asset (AT;_1), log of
lagged capital stock, and log of employment (EMP,). The standard errors are two-way
clustered across firms and years.

The monetary policy shock is computed and merged with the Compustat data follow-
ing Ottonello and Winberry (2020) and Jeenas (2018). The monetary policy data on the
timings of the FOMC announcement and the high-frequency surprise are from Gurkaynak
et al. (2005) and Gorodnichenko and Weber (2016). The details on the computation of the

monetary policy shock and merging steps are available in Appendix D.
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Table 2: Investment sensitivities to the monetary policy shocks (narrow window)

Dependent variables:

log(I) I{£: > 0.2}
L S L S
MP; -2.201  -7.025 -0.870 -2.072
(0.606) (2.41) (0.367) (0.676)
Obs. 29,400 7,903 29,400 7,903
R? 0.929 0.791  0.603 0.558
Firm FE Yes Yes Yes Yes
Sect.-year FE Yes Yes Yes Yes
Firm-level ctrl. Yes Yes Yes Yes
Two-way cl. Yes Yes Yes Yes

Notes: The independent variables include the monetary policy shock (tight window), fixed effects
(firm and sector-year), and firm-level control variables (lagged current account (ACT;_1), lagged
total debt (DT;—1), and operating profit (OIBDP;) normalized by lagged total asset (AT;_1),
log of lagged capital stock, and log of employment (EM P;)). The numbers in the bracket are the
standard errors. The standard errors are clustered two-way by firm and year.

Table 2 reports the coefficient of monetary policy shock (M P,) for large and small firms
across different choices of dependent variables.'® As can be seen from the first two columns,
the elasticity of the investment is significantly lower in large firms than in small firms.
This is consistent with the empirical results in the literature (Zwick and Mahon, 2017) and
contradictory to the elasticities implied in the existing models, which will be investigated
in the following section. Also, the sensitivity of the spike ratio is significantly lower in large

firms than small firms, as reported in the third and fourth columns.!!

3 Model

I develop and analyze a heterogeneous-firm real business cycle model in which the cross-

section of the interest elasticities of firm-level investment matches the empirical estimates.

10Table 2 is based on the tight-window monetary policy shock. The results for the wide-window shock
and extended results are all available in Appendix B.2. Also, I provide the robustness check based on a 10%
cutoff in Appendix B.2.

" Two estimates are statistically different at the 5% significance level. A set of extended regression results
is available in Appendix B.2.
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In the model, time is discrete and lasts forever. There is a continuum of measure one of
firms that own capital, produce business outputs, and make investments. The business

output can be reinvested as capital after a firm pays adjustment costs.

3.1 Technology

A firm produces goods using capital and labor inputs, which can be converted to a unit
of capital after paying an adjustment cost. The production technology is a Cobb-Douglas

function with decreasing returns to scale:

zitAe f (Kit, i) = 2z Akl a+~v <1 (3)

where k;; is firm ¢’s capital stock at the beginning of period t; l;; is labor input; z; is id-
iosyncratic productivity; A; is aggregate TFP. Idiosyncratic productivity, z;;, and aggregate

TFP, A, follow the stochastic processes as specified below:

In(zit41) = p2An(zi) + €241, €641 ~4iia N(0,02) (4)

ln(At+1) = PAln(At) + €A+l €A+ ~iid N(07 UA) (5)

where ps and o, are persistence and standard deviation of the i.i.d innovation in each process
s € {z, A}, respectively. Both stochastic processes are discretized using the Tauchen method

in computation.

3.1.1 Investment and adjustment costs

I assume firm-level large-scale investment can be made only after paying a total adjustment
cost, ¥;;, which varies across firm-level allocations. The total adjustment cost is a function of
capital stock, k;;, investment size I;;, and a fixed cost shock &;; ~yq Unif]0, €] as in Winberry

(2021). This total adjustment cost is composed of two additively separable parts: a convex

adjustment cost and a fixed adjustment cost. The convex adjustment cost is a function of

14



the current capital stock, ki, and the investment I;; as assumed in the literature.'> The
fixed adjustment cost, Fj, is a function of the current capital stock k;; and a fixed cost
shock &4 ~iiq Unif[0,€]. The fixed cost is not incurred if a firm adjusts capital within a
moderate range I;; € 2(ky) := [—vkit, vkit], where v < 6. A firm needs to pay a fixed cost

for investment beyond this range.'® The fixed cost is assumed to be overhead labor cost,

so it varies over the business cycle due to wage fluctuations.
To summarize, I assume the following total adjustment cost structures:'®
Vit = Y(kt, Lit, it; we) (6)
Ii\*
=i\ kit 4+ F(kit, &ir)wy (7)
it
fitkC if Iy ¢ Q2(kit) = [_Vk?ita Vkit]
F(kit, &) = (8)

0 if I € Q(klt) = [—Vk‘it, Vk‘it]

This model’s key difference from the existing literature is the size-dependent fixed cost
parametrized by the extensive-margin elasticity dispersion parameter, (. As ( increases,

the extensive-margin elasticity gap between small and large firms widens.'® In Section 4, I

12The convex adjustment cost follows Cooper and Haltiwanger (2006), which includes the firm level capital
ki+ in the denominator. Although the model does not explicitly model the financial frictions, the large firms’
lowered financing cost is implicitly captured by the denominator, which contributes to an intensive margin
insensitivity.

13The range (k) does not fully cover the depreciated portion, necessitating lumpy investments following
Khan and Thomas (2008).

The labor cost assumption follows Khan and Thomas (2003, 2008), Miao (2019), and Winberry (2021).
Alternatively, the literature has considered fixed costs scaling with productivity (Baley and Blanco, 2021),
or profit (Caballero and Engel, 1999; Cooper and Haltiwanger, 2006). These papers typically assume linear
or near-linear scaling. However, as demonstrated in Appendix B.1, such weak scaling fails to capture the
empirical cross-sectional pattern where large firms exhibit substantially lower interest elasticities than small
firms. The stronger curvature (¢ = 3.5) in my specification is necessary to match this empirical regularity.

5The convex adjustment cost parameter p has units of final output per unit of capital. When applied
to the quadratic function (1/2)(i/k)?k, it yields total costs in units of final output. The fixed adjustment
cost kS represents the overhead labor headcount required for coordination across establishments, where k¢
captures the number of coordinations required and £ has units of labor per coordination. When multiplied
by wage w(.S), this gives costs in final output units. The maintenance range v is expressed as a fraction of
capital stock, constrained to be less than the depreciation rate d.

Fang (2023) shows that a plain-vanilla fixed adjustment cost following uniform distribution makes it
difficult to match the empirically observed levels of mean and variance of the adjustment costs. The size
dependence in the fixed adjustment cost effectively handles this problem through the additional variation in
the cost side determined by the endogenous firm size dispersion.

15



quantitatively investigate how ( affects the cross-sectional distribution of interest-elasticity

and the macroeconomic allocations.

3.1.2 Size-dependent fixed cost: microfoundation

The primary motivation for the size-dependent fixed cost specification is to match the em-
pirical evidence on investment elasticities across firm sizes. As documented in Appendix
B.1, this specification successfully captures the observed pattern where large firms exhibit
lower interest elasticities than small firms—a pattern that standard models fail to repro-
duce. While other mechanisms might also generate these elasticities, this section provides
a suggestive theoretical foundation based on coordination costs across establishments that
offers a plausible microfoundation for the size dependence.

The presence of fixed costs in firm investment has been widely accepted in the literature.
However, relatively little research has been conducted on whether the fixed cost occurs at the
establishment or firm levels. Depending on the model specification and the granularity of the
data, researchers have flexibly chosen between establishment and firm-level specifications.
My paper incorporates the fixed cost at the firm level, but its functional form is grounded
in coordination costs across the establishments.!” I argue that if a firm decides to make
a large-scale investment by expanding establishments, the total fixed cost increases in the
number of establishments due to interdependence across the establishments. For example,
if a new establishment is constructed, the production lines in the existing establishments
have to be adjusted to coordinate with the new one, and managers need to be reallocated
across different production units.'® Therefore, intuitively, firm-level fixed cost increases in
the number of establishments and the degree of interdependence across the establishments.

To sharpen the theoretical points, let’s assume a firm has n establishments and plans

17Consistent with Kehrig and Vincent (2025), the establishment-based fixed adjustment cost would de-
crease the dispersion of the marginal product of capital across the establishment within a firm. However,
this is beyond the scope of my paper, as my model abstracts from the establishment-level dynamics.

18] assume the fixed cost is in the unit of labor, necessitating multiplication by wage w(S) in the full
cost specification (Thomas, 2002; Gourio and Kashyap, 2007; Khan and Thomas, 2008; Winberry, 2021).
When the cost is assumed to be in the unit of firm-level outputs, thereby removing cyclical fluctuations, the
baseline model’s state dependence is amplified by around 3%.

16



to expand a new factory. Then, if establishments are coordinated pairwise, and if the fixed

cost of each coordinated pair is &, the total firm-level fixed cost F is as follows:?

Fy

Il
X
N
Il
A

9)

which quadratically increases in the number of establishments. This is when each estab-
lishment is interdependent pairwise. Then, if an establishment’s operation is dependent
on ¢ — 1 number of other establishments on average, the firm-level fixed cost becomes as

follows:

Fg = X f = f (10)

The firm-level fixed cost F increases with the number of establishments raised to the power
of {. For a higher interdependence across the establishments, the fixed cost increases faster.
This simple theoretical result shows that the number of the basic operation units (e.g.,
establishment, department or team) convexly increases the internal complexity in term of
the interactions under the interdependence. Then, it increases the firm-level fixed cost when
the firm makes a large-scale capital adjustment.

I proxy the number of establishments (or basic production units) by the total capital
stock ki based on the empirical evidence from Cao et al. (2019). Using the US adminis-
trative data, they point out that the firm growth is dominantly driven by the expansion in

the number of establishments.

3.2 Household

I consider a stand-in household which consumes, supplies labor, and saves in the equity

portfolio. In the beginning of a period, the household has an equity portfolio a and the

9The subscript 2 indicates the degree of the interdependence, which is 2 (pairwise) here. Note that &
represents the cost per coordination requirement, not per establishment.
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information on the contemporaneous distribution of firms @ and the aggregate TFP level

A. The household problem in the recursive form is as follows:

V(@) = max logle) — ol + FEV (e’ ) (11)
st o+ / / Lo wa(S, §)J(K, /s S)a(k, 2 )k x 2/]dA (12)

— w(S)l + / J(k, 2 S)a(k, 2)d[k x 2] (13)

Go(S) =&, BA|A) =Ty, S=1{ A} (14)

where V' is the value function of the household; I'4 4/ is the aggregate state transition
probability; ¢ is consumption; a’ is a future saving portfolio; Iz is labor supply; w is wage,
and r is real interest rate.

From the household’s first-order condition and the envelope condition, I obtain the

following characterization of the stochastic discount factor ¢(S,S’):

q(S,8") =8 (15)

I define p(S) := 1/C(S). In the recursive formulation of a firms’ problem in the next section,

I use p(S) to normalize the firm’s value function, following Khan and Thomas (2008).

3.3 A firm’s problem: Recursive formulation

In this section, I formulate a firm’s problem in the recursive form. For notational brevity, 1
abstract the time and individual subscripts and denote future allocations by an apostrophe.
In the beginning of a period, a firm starts with capital k, an idiosyncratic productivity z,
and the information on the contemporaneous distribution of firms @ and the aggregate TFP

level A. For each period, the firm determines investment level I and labor demand [. A
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firm’s problem is formulated in the following recursive form:

J(k, 2 8) = w(k,z8)+(1—0)k (16)

+ /OgmaX{R*(k,Z; S) = F(k,Hw(S), R(k, 2 5)} dG¢(§) (17)
R (k,2 8) = max — K = c(k, ') + Eq(S, §')J (K, 2'; S") (18)
R°(k, 2 S) = 7 ax — K — ek, k°) + Eq(S, $')T(k, 25 §) (19)

m
ke—(1—0)ke2(k)

(Operating profit) m(k,z;S) = max zAK*" — w(S)I (I: labor demand) (20)

(Convex adjustment cost) c(k, k') == (u'/2) (K — (1 — §)k) k) k (21)
(Size-dependent fixed cost) F(k,€) :=€kS (22)
(Constrained investment) k¢ — (1 =96k e Q2k) = [-kv,kv] (v <) (23)
(Idiosyncratic productivity) 2" = G,(z) (AR(1) process) (24)
(Stochastic discount factor) q(S,5") = B(C(S)/C(S")) (25)
(Aggregate states) S={A,9} (26)
(Aggregate law of motion) ¢ :=H(S), A" =Ga(A) (AR(1) process), (27)

Then, I multiply p(S) = 1/C(S) on the both sides of line (17) to normalize the value
functions, following Khan and Thomas (2008). The detailed explanation is available in
Appendix J.1.

A firm makes a large-scale investment only if R*(k,z;S) > R°(k,z;S). Therefore, a
firm-level extensive-margin investment decision can be characterized by the threshold rule,

gex, as follows:

(28)

ge- (k. 2 5) = min { R*(k, 2 8) — R°(k, 2 5) 5} |

w(S)kS ’

where firms invest in the extensive margin only when & € [0, ge«(k, 2;.5)). This threshold

rule is distinguished from the ones in the literature in that it includes the capital stock in
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the denominator. This lowers the threshold level more for large firms than for small firms,
helping capture the empirically supported cross-section of interest elasticities — large firms
are less elastic than small firms. I quantitatively show this in Section 4.

I denote gp+ as the optimal future capital stock conditional on the extensive-margin
investment, gic as the optimal future capital stock conditional on the small-scale investment,
and g as the unconditional optimal capital stock. Then, the capital adjustment policy can

be summarized as follows:

gk*(k,Z;S) 1f£<g£*(k,Z,S)
gk (k, z;9) = (29)

Gre(k, 2;8) if € > gex(k, 2 5).

The standard recursive competitive equilibrium is considered for the analysis of the global
equilibrium dynamics. The equilibrium consists of: i) household inter- and intra-temporal
policy functions, ii) firm policy functions satisfying individual optimality conditions, iii)
market-clearing prices, and iv) a perceived aggregate law of motion consistent with the
aggregate dynamics implied by these policy functions. The formal definition is available in

Appendix J.2.

4 Fragility after a surge of lumpy investments

This section quantitatively analyzes the macroeconomic implications of the synchronized
lumpy investments of large firms. First, I discipline the baseline model by calibrating the
parameters to fit the data moments. Especially, the different interest elasticities between
small and large firms are the key moments to be fitted, which are hardly captured in

alternative models.

4.1 Calibration

In this section, I elaborate on how the model is fitted to the data and the corresponding

parameter levels. Table 3 reports the target and untargeted moments from the data and the
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simulated moments in the model. Table 4 reports the calibrated parameters given the fixed
parameters reported in Table 1.9. In the simulation step, I use the non-stochastic method

in Young (2010).

Table 3: Fitted moments

Moments Data Model Reference

Targeted moments

Semi-elasticity of investment (%) 720  6.60 Zwick and Mahon (2017)
Cross-sectional semi-elasticity ratio (%) 1.95 1.81  Zwick and Mahon (2017)
Cross-sectional average of i;;/k; ratio 0.10 0.10  Zwick and Mahon (2017)
Cross-sectional dispersion of i;;/ki: (s.d.)  0.16 0.16  Zwick and Mahon (2017)
Cross-sectional average spike ratio 0.14  0.14  Zwick and Mahon (2017)
Positive investment rate 0.86 0.86 Winberry (2021)
Time-series volatility of log(Y}) 0.06 0.07  NIPA data (Annual)
Labor hours 0.33 0.33 8 working hours per day
Untargeted moments (all in yrs.)

Average inaction periods 6.38 7.88  Compustat data
Dispersion of inaction periods 4.87 5.65  Compustat data

Average of lag diff. of inaction periods 0.27 0.69  Compustat data
Dispersion of lag diff. of inaction periods  6.47 8.56  Compustat data
Large firm’s average spike ratio 9.19 9.58  Compustat data
Small firm’s average spike ratio 16.81 13.28 Compustat data

Notes: The data moments are from the sources specified in the reference column. The same sample restriction
as in the empirical analysis applies. I use linearly detrended real GDP from the National Income and Product
Accounts at the annual frequency for the aggregate output volatility.

The target semi-elasticity of average investment comes from Zwick and Mahon (2017).
The cross-sectional semi-elasticity ratio is also from the same paper, which documents that
small firms’ investments are around twice elastic as large firms towards the interest rate
change. The cross-sectional average and dispersion of the investment-to-capital ratio and
the average spike ratio are targeted to match the levels in Zwick and Mahon (2017) as in
Winberry (2021) and Koby and Wolf (2020). Consistent with the literature, I define the
spike ratio as the fraction of firms investing greater than 20% of the existing capital stock.
The target of positive investment rate is from Winberry (2021). The positive investment rate
is defined as the fraction of firms with an investment that is greater than 1% but smaller than

20% of existing capital stock. Only a negligible fraction of firms makes negative investment
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in both data and the model. To discipline the aggregate TFP-driven fluctuations in the
model, I target the output volatility calculated from annual National Income and Product

Accounts (NIPA) data.

Table 4: Calibrated parameters

Parameters Description Value

Internally calibrated parameters

¢ Fixed cost curvature 3.500
3 Fixed cost upperbound 0.440
ul Capital adjustment cost 0.760
v Small investment range 0.041
o Standard deviation of idiosyncratic TFP 0.130
oA Standard deviation of aggregate TFP shock 0.025
n Labor disutility 2.400

Externally estimated parameters
P Persistence of idiosyncratic TFP 0.750

Notes: Parameters in the upper part of the table are calibrated to match the moments in Table
3. The persistence of idiosyncratic TFP is directly computed from fitting the estimated firm-level
TFP (Compustat) into AR(1) process. The firm-level TFP is estimated following Ackerberg et al.
(2015) using US Compustat data.

In the model, variations in the fixed cost parameter and convex adjustment cost param-
eters lead to sharply divergent effects on the dispersion of the investment rate (investment-
to-capital ratio), while both lower the average investment rate. The dispersion of the
investment rate increases with the fixed cost parameter, as the difference in the invest-
ment rate between extensive-margin adjusters and non-adjusters increases.?’ On the other
hand, a higher convex adjustment cost lowers the investment rate for all firms, leading to
a lower dispersion in the investment rate. These two divergent effects, together with the
average investment rate, jointly identify the levels of the fixed and convex adjustment cost
parameters.

The investment range parameter v is jointly identified from the spike ratio and the dis-

persion of the investment rate. A higher investment range leads to a lower spike rate due

to a greater feasibility of the low-cost investment and to a lower investment rate disper-

20Tf the fixed cost is too high, the portion of adjusters become too small to have meaningful contribution
to the investment rate dispersion.
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sion. v is assumed to be bounded above by the depreciation rate § to prevent firms from
permanently avoiding fixed costs through maintenance alone.

The fixed cost curvature parameter ( is identified from the cross-sectional semi-elasticity
ratio between small and large firms. As ( increases beyond unity, the large firms’ interest
elasticity decreases due to the lengthened Ss band.?’ The calibrated level of ¢ is 3.5,
suggesting that 3.5 establishments are involved per production line on average.??

The calibrated baseline model correctly captures the cross-sectional elasticity ratio be-
tween small and large firms. This makes it a suitable framework for analyzing the role of
large firms’ investment in dynamic stochastic general equilibrium—a key contribution to
the literature, as existing models fail to capture this cross-sectional pattern.?> Throughout
the quantitative analyses, this calibrated model will be referred to as the baseline model.

Untargeted moments The model also matches several untargeted moments, pro-
viding external validation of the mechanism. Average inaction is around 6.38 years in the
data, while in the model it is 7.88 years. The standard deviation of inaction periods is
4.87 years in the data, and the model counterpart is 5.65 years. The model also captures
the different lumpy investment patterns between large and small firms—the model-implied
spike ratios are 9.58% and 13.28% for large and small firms, respectively, while the data
counterparts are 9.19% and 16.81%.2* These close matches to untargeted moments, par-
ticularly the spike ratio differences, suggest that the results would be robust to alternative
calibration strategies (such as directly targeting the spike ratio differences to discipline the
¢ parameter).

Time-series validation I validate the calibrated baseline model by comparing model-

implied spike ratios for large firms with their observed counterparts from Compustat. Using

21A contemporaneous work, Gnewuch and Zhang (2025) studies how monetary policy shock affects the
distribution of investment rates, and they document that young firms are more sensitive to the shock than
old firms. Regarding this elasticity difference, they conclude that the extensive-margin sensitivity plays a
crucial role, consistent with the results in my paper.

22The related explanation is available in Section 3.1.2.

23 Appendix B.1 quantitatively demonstrates that conventional fixed adjustment cost models counterfac-
tually reverse the interest elasticity ranking, making large firms more responsive than small firms.

Large and small firms’ spike ratios are statistically different at 1% significance level both in the data
and the model.
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the measured TFP series from the Bureau of Labor Statistics (BLS) and Fernald (2014)
within the global solution framework, I simulate model-based spike ratios that are directly
comparable to the data. As shown in Figure C.3 in Appendix C, the model and data spike
ratios exhibit closely correlated patterns, with correlations of 0.79 (BLS) and 0.72 (Fernald)
after controlling for pre-dot-com outliers. This validation confirms that the calibrated model
successfully captures the cyclical dynamics of large firms’ lumpy investments. Appendix C
provides further details and visualizations of this analysis.

Business cycle statistics Finally, I compare the baseline model’s business cycle
moments with aggregate data from NIPA (1955-present, annual). As shown in Table 1.12,
the model matches key second moments well: output volatility is targeted, while investment
autocorrelation (0.742 in the model vs 0.740 in the data) and its correlation with output
(0.796 in the model vs 0.795 in the data) are closely replicated despite not being targeted.

The model slightly understates the relative volatilities of consumption and investment.

4.2 The global nonlinear solution method

I solve the model with the aggregate uncertainty using a sequence-space-based global non-
linear solution framework called the repeated transition method. Due to the nonlinear
aggregate dynamics, it is difficult to correctly specify the law of motion for the endogenous
aggregate variable (the firm distribution) in the state-space-based method. Instead, the
concurrently developed method in Lee (2025) solves nonlinear dynamic stochastic general
equilibrium in the sequence space.

The method exploits the ergodicity of the recursive competitive equilibrium: if the
simulated equilibrium path is long enough, all possible equilibrium states are realized on
the path. This enables sharp computation of conditional expectations by using realized value
functions from periods with similar endogenous states. Notably, the conditional expectation
is computed without specifying parametric laws of motion. Instead, the method relies on a
similarity metric across state realizations.

In addition to computational accuracy, the method achieves substantial computational
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efficiency due to its efficient treatment of the non-trivial market clearing conditions. Khan
and Thomas (2008) has introduced an internal loop for the period-by-period market clearing
condition following Krusell and Smith (1997), which substantially increases the computa-
tional cost. The sequence-space-based method bypasses the market clearing condition over
the iteration by using the implied prices rather than market clearing prices, and the former
converges to the latter in the limit, simultaneously when the equilibrium allocations are
computed. The detailed method is described in Appendix E.

By adopting the global equilibrium analysis, my paper tracks the endogenous formation
of the fragility condition, as well as the global impulse response analyses conditional on
different fragility levels. Thus, the results do not rely on differently calibrated steady states
or exogenously given conditions — all the results are based on the subpaths of the integrated
recursive competitive equilibrium framework. Within this equilibrium, the state-dependent

responsiveness is endogenously shaped.

4.3 Synchronization and fragility

Based on the global nonlinear equilibrium dynamics, I study how the synchronized invest-
ment timings of large firms affect the aggregate investment dynamics over the business
cycle. This section comprises three parts: 1) synchronization mechanism, 2) fragility after
the synchronization, and 3) mapping the model prediction to the data. In the equilibrium,
firm-level investment timings are endogenously synchronized due to the past aggregate TFP
shock history. In the first part, I elaborate on the endogenous synchronization mechanism
in the model. Second, I study the economy’s different responses to the same negative
shock depending on the contemporaneous synchronization patterns, which is captured by
the fragility index dynamics.?® Lastly, I analyze how much of the drop in aggregate invest-
ments during recessions are accounted for by the fragility index in the data.
Synchronization When an aggregate TFP shock hits, firms accelerate or postpone

their investment plans based on their location in the Ss cycle. For example, when a neg-

25The sufficiency of the fragility index combined with the aggregate capital K in capturing the aggregate
law of motion is computationally shown in Appendix E.

25



ative aggregate TFP shock hits, firms scheduled to implement lumpy investments tend to
postpone them due to the expected poor economic conditions. Then, investment timings
of these postponing firms and those who plan to invest in the subsequent periods become

synchronized.

Figure 3: Distributions over the Ss band for the most and least fragile states in the RCE
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Notes: The solid line is the probability density deviation from the stationary equilibrium coun-
terpart for the highest fragility state in the simulated recursive competitive equilibrium. The
dashed line is for the lowest fragility state.

In the recursive competitive equilibrium, the stochastic aggregate TFP process endoge-
nously generates significant fluctuations in synchronization patterns, reflected in the fluc-
tuations in the fragility index. Figure 3 shows the probability distribution over the years
from the last lumpy investments for the highest (solid line) and lowest (dashed line) fragility
periods among the 5,000 simulated periods.?® In particular, it plots a level deviation (the
difference in the probability mass) from the stationary equilibrium’s counterpart. Due to
the stochastic nature of the Ss band in the model, there is no deterministic trigger point
(small s) in the Ss cycle. However, firms with similar individual states tend to invest at

a similar time after their last lumpy investment. If a long period has passed since a firm

26Based on the equilibrium path of the firm-level investments, I construct the fragility index consistent
with the empirical counterpart in Section 2. It is worth noting that the fragility index is constructed from the
readily observable micro-level variables: the past investment history of large firms, most of which are listed
and subject to financial reporting regulations. Therefore, the index can be measured in a timely manner
and can help predict near-term aggregate investment. This feature is starkly contrasted with the existing
indices in the literature based on the joint distribution between capital stock and productivity that is not
directly observable (Caballero and Engel, 1993; Bachmann et al., 2013; Baley and Blanco, 2021).
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made its last investment, the firm is likely closer to the trigger point, and vice versa. Thus,
the years from the last lumpy investment capture the location at the Ss band.

During the period of highest fragility, a significant portion of large firms have recently
completed lumpy investments, indicating that many firms are further away from the trigger
point in the Ss band (the small ’s’ threshold). Specifically, the average time since the last
spike is 22% lower than the stationary equilibrium level in high-fragility periods, while
it is 16% higher in low-fragility periods. In Appendix G, I show that small firms display
significantly dampened synchronization compared to large firms (see Figure G.10) — in their
highest and lowest fragility states, the average years from the last spike are 9.78% lower
and 2.65% higher than the steady state, respectively. These endogenous fluctuations in
firms’ positions within the Ss band generate significantly different investment responses to
aggregate TFP shocks, as demonstrated in the following analysis.?”

Fragility after the surge Figure 4 plots the generalized impulse response function
(GIRF), which is computed by combining the sub-paths of the recursive competitive equi-
librium. A negative two-standard-deviation TFP shock is considered for the states with
the fragility index two standard deviations above (solid line) and below (dashed line) the
stationary equilibrium level. The vertical axis captures the percentage deviation from the
level before the shock arrival. Despite the same exogenous shock, the responsiveness is
significantly different between the two states: the high fragility state shows approximately
32% larger decline than the low fragility state (—26.94 vs. —18.18).

Using the linear regression, I obtain the following negative relationship between the

contemporaneous aggregate investment response and the fragility index:

AIL (% w.r.t. s.s. response) = — 7.875  Fragility, (s.d.) + ¢, R>=0.677

(0.173) (30)

When the fragility index increases by one standard deviation, the contemporaneous response

2T Appendix G provides detailed analysis of synchronization dynamics after an MIT shock, including the
evolution of cross-sectional distributions on the Ss band.
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Figure 4: Generalized impulse response of investment
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Notes: The solid line is the impulse response to the TFP shock when the fragility index is
two standard deviations above the stationary equilibrium level. The dashed line is for the
state where the fragility index is two standard deviations below the stationary equilibrium.
of the aggregate investment to the negative one-standard-deviation shock is amplified by
7.875% compared to the steady-state response. On the other hand, in the model with
convex and constant fixed adjustment costs, the coefficient is -2.193, which is significantly
lower in absolute value than the baseline. This demonstrates that the baseline model, in
which large firms’ inelastic adjustment drives the nonlinearity, generates greater endoge-
nous fragility than the canonical model with convex and constant fixed adjustment costs.
Lastly, if fragility increases by one standard deviation, the future output decreases by 0.322
percentage points through the amplified aggregate investment response to the negative ag-
gregate shock. In Appendix F.1, I compare the state dependence across the different models
and visualize the relationship between the responsiveness and the fragility through a scatter
plot.
Fragility effect in the data How much of the investment drops in recessions are
accounted for by the fragility effect? To examine the state dependence of shock respon-
siveness in the data with a close comparison to the model, I run the following regression

analysis where the interaction between the fragility and the output shock is the key variable
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of interest:

gl = a+ 5" OutputShock, + BE 9 Output Shock, x Fragility, + «;. (31)

gl is the aggregate investment growth rate. OutputShock; is a shock to the log output,
obtained from the residuals in the AR(1) fitting of the log output time series. The aggregate
investment and output data are from National Income and Product Accounts data. In this
specification, QutputShock; exogenously arrives at ¢, while the Fragility; is determined at

t — 1. Therefore, the two variables are independent of each other.?®

Table 5: State-dependent sensitivity of the aggregate investment growth

Dependent variable: g{ (p.p.)

(=) OutputShock;  (+) OutputShock;

Model Data Model Data

OutputShocky (s.d.) 9.389 5.818 8.490 6.937
(0.066)  (1.338)  (0.064)  (1.221)
OutputShock; x Fragility; (s.d.)  1.537 2.430 -2.011 -1.486
(0.042)  (L311)  (0.045)  (0.495)

Constant Yes Yes Yes Yes
Observations 2,296 16 2,705 18
R? 0.908 0.790 0.884 0.705
Adjusted R? 0.908 0.755 0.884 0.663

Notes: The dependent variable is the growth rate of aggregate investment. The independent
variables are output shocks obtained from fitting output series into an AR(1) process and the
interaction between the output shock and the fragility index. The fragility index is based on the
years since the last lumpy investment of large firms. The first two columns report the regression
coefficients from the simulated data and Compustat data when the negative output shock hits.
The third and fourth columns report the regression coefficients when the positive output shock
hits. The numbers in the brackets are standard errors.

In Table 5, the coefficient estimates from the model and data are statistically indistin-
guishable, while each coeflicient is statistically significant. When the fragility index increases
by one standard deviation: (i) for a one-standard-deviation negative output shock, aggre-
gate investment growth decreases by an additional 1.5% (model) and 2.4% (data); (ii) for

a one-standard-deviation positive output shock, aggregate investment growth increases by

28The measurement of output shock is subject to an endogeneity issue which will be discussed below.
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only 2.0% (model) and 1.5% (data), compared to the low-fragility case. The amplifying
effect of the negative output shock and the mitigating effect of the positive output shock
under the high fragility state are both due to the absence of lumpy investments of large
firms. That is, after a surge of lumpy investments of large firms, a negative shock leads to
a deeper drop in aggregate investment, while a positive shock leads to a dampened increase
in aggregate investment.?”

To quantify the economic significance of these findings, I use the estimates from the
data in Table 5 to measure the portion of the investment growth rate that is accounted
for by the interaction between the output shock and the fragility index. Specifically, the

fragility-adjusted investment growth rate g’ 41 is obtained as follows:

gfdj’l = gtI — B\Fmgility - QutputShock; x Fragility;. (32)

Figure 5: Fragility-adjusted investment growth
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Notes: The solid line is the aggregate investment growth rate from NIPA. The dashed line is the fragility-
adjusted investment growth. The dotted line is the average level of the aggregate investment growth rate.

Figure 5 plots the time series of the raw aggregate investment growth rate (solid line)

29In Table 1.11, I report the additional regression results under different specifications. When the output
shock is the only independent variable in the regression, around 73% and 52% of the investment growth
rate variations are explained, respectively, for negative and positive shocks in the data. Once the fragility
fluctuation is considered, R? values improve to 79% and 71%.
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and the fragility-adjusted investment growth rate (dashed line). After the adjustment, the
investment drops during the three recessions are mitigated. Table 6 compares the deviations
from the average level for the raw and the fragility-adjusted investment growth rates in the
three most recent recessions of the sample period. Around 23% of the deviation from
the average level is accounted for by the fragility effect during recessions. The standard
deviations show that around 30% of aggregate investment volatility can be explained by

the interaction effect (0.30 = 0.018/0.060).

Table 6: Investment growth rates during recessions

Distance between inv. growth rate and average: Ag! (p.p.)

Raw data (NIPA) Without fragility ~Adjusted portion (%)

Recession-1991 -8.019 -6.239 22.197
Recession-2001 -7.695 -5.852 23.951
Recession-2009 -23.112 -17.847 22.780

Notes: The first column reports the investment growth rate (%) at recession years of 1991, 2001,
and 2009 minus the average investment growth (= 4.5%). The second column reports the adjusted
investment growth rate after removing the predicted component from the fragility indices using the
coefficients of Table 5. The third column reports the adjusted portion (%).

4.4 Compositional heterogeneity in the fragility effect

This section analyzes how the fragility effect operates primarily through large firms, with
small firms displaying minimal state dependence. Rognlie et al. (2018) shows that an
over-accumulation of capital stock results in a sharp drop in the aggregate investment.
Building upon this insight, the fragility mechanism in this paper predicts that the intensity
of this hangover effect depends on which firms drive the investment surge. The negative
relationship between the responsiveness and the synchronization (fragility) is significantly
starker for large firms than for small firms. As shown in the linearly fitted regression results

below (33) - (34), there are significant differences between the two groups in terms of the
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slope and the goodness of fit.%°

AL (% w.r.t. s.s. response) = — 10.418 x Fragility, (s.d.) + ¢, R>=0.844 (33)
(0.142)
AP (% wrt. s.s. response) = — 3.140 x Fragility, (s.d) + ¢, R?=0.175 (34)

(0.216)

5 Policy implication: state-dependent interest elasticity of

aggregate investment

In this section, I discuss the policy implications of the fluctuations of the fragility index over
the business cycle. In the baseline model economy, aggregate investment features a strong
history dependence.?' This history dependence not only affects the aggregate investment’s
response to the TFP shock but also affects its elasticity to the interest rate change.

Using linear regression, I obtain the following result:

AElasticity; (% w.r.t. s.s.) = — 3.350 ¥ Fragility; (s.d) + e, R?=0.689 (35)

(0.032)

A one-standard-deviation increase in the fragility index decreases the interest elasticity of
aggregate investment by around 3.350% compared to the steady-state level. The intuitive
explanation is that when the fragility index is high, few large firms are positioned to flexi-
bly undertake large-scale investments. Therefore, aggregate investment’s responsiveness to
interest rate changes decreases in high-fragility states. In Appendix H.2, I show that the
state-dependent elasticity is driven by large firms through a comparison with small firms’

effects.

30 Appendix F.2 visualizes these two different negative relationships.
31Given that the aggregate states include all the relevant information from history, the state dependence
and the history dependence are interchangeable in the model.
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When the fragility index increases by one standard deviation, large firms’ investment
elasticity decreases by around 5.257%. On the other hand, the same variation in the fragility
index decreases small firms’ elasticity by 1.244%, and the difference is statistically signif-
icant. This result shows that large firms dominantly drive the stark negative relationship

between the interest elasticities of aggregate investment and the fragility index.

5.1 An augmented model with the SDF shifter

The baseline model does not include a monetary policy block, which precludes direct analysis
of monetary transmission mechanisms. However, I can examine how interest rate changes
affect investment dynamics in general equilibrium by introducing a preference shock process
¢ that exogenously shifts the stochastic discount factor, following Christiano et al. (2014).
This approach allows me to analyze state-dependent investment responses to interest rate
variations while maintaining the model’s general equilibrium structure. Note that these
shocks affect the real interest rate rather than nominal rates, and thus capture only one

dimension of monetary policy transmission.>?

T

¢ u(c(s"))
gﬁt u(er) = q(8,5) = , 36
par Pt ( t) ( ) © 'LL(C(S)) ( )
where the aggregate state S is augmented as S = [D, A, ¢|. (37)

I assume ¢ follows a three-state Markov process where the states are G, = [0.99, 1,1.01],
where the two non-unity values correspond to a one percent increase and decrease in the
interest rate. The preference shift is assumed to happen with 10% probability and to be

short-lived: once a non-unity value is visited, I assume it reverts to unity in the following

32This differs from the partial equilibrium analysis in Figure H.12 (Appendix H.1), which shows the neg-
ative relationship between interest elasticity and the fragility index through Equation (35). A full monetary
analysis would require incorporating nominal rigidities and a central bank reaction function, which is beyond
the scope of this paper.
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period with probability one.??

Based on this augmentation, I recompute the recursive competitive equilibrium using
the sequence-space global solution method. Figure 6 plots the generalized impulse response
functions of aggregate investment to a positive SDF shock (¢ = 1.00 — 1.01) that is
approximately equivalent to 1% interest rate drop. The same shock is considered for two
different states. Ome has fragility two standard deviations above steady state, while the
other has fragility two standard deviations below. I assume the TFP level at shock arrival
is one standard deviation lower than average, representing a slight downturn where lowering

the interest rate would be a more realistic policy consideration.

Figure 6: Generalized impulse response of investment to a positive SDF shock

L = high fragility
) = =low fragility
U

Time (years)
Notes: The solid line (high fragility) is the impulse response to the TFP shock when
the fragility index is two standard deviations above the stationary equilibrium level.
The dashed line (low fragility) is for the state where the fragility index is two standard
deviations below the stationary equilibrium.

Despite the same exogenous shock, the responses at the two states are significantly dif-
ferent. When fragility is high, the contemporaneous responsiveness of aggregate investment
is dampened by more than half compared to the low fragility state (2.2 compared to 4.9).
Table 7 decomposes different responses for high and low fragility states into intensive and
extensive margins.?* For this analysis, I first fix the extensive margin decisions at the coun-

terfactual equilibrium path where the shock did not arrive, then measure the response of

aggregate investment to extract the intensive-margin variation. Then, the residual varia-

33The quantitative result is robust over the choice of the event probability due to the i.i.d. assumption. I
assumed 10% to let the shifting events happen sufficiently many times in the simulated path.
34Table 7 is motivated by Table 6 of Vavra (2014).
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tions are accounted for by the extensive-margin variations.

While the intensive margin response of the high fragility state is lower than that of the
low fragility state by around 31%, the extensive margin is lower by around 62%. This result
shows the extent to which the lowered interest rate elasticity is driven by the extensive-
margin investment decision, as captured by the marginal distribution of firms concentrated
at the early stages of the Ss band in Figure 3.

Table 7: State-dependent investment responses to the interest change: decomposition

Intensive Extensive
Response (%) Total margin margin
High fragility 2.260 0.818 1.442
Low fragility 4.948 1.192 3.756

Notes: The first column reports the instantaneous investment responses to the stochastic discount
factor shock. The second column reports the instantaneous responses when the extensive-margin
investment is muted. The last column reports the residual variation after the intensive-margin-
only variation (the second column).

Discussion The analyses above show that when fragility is high, monetary policy
cannot effectively operate through the firm-level investment channel. Given that recent
recessions occurred during periods of high fragility, this finding supports Tenreyro and
Thwaites (2016), who document that conventional monetary policies have been less powerful
during recessions, especially through business investment channels. Moreover, my paper
adds to the related literature by providing an endogenous mechanism that explains the
state dependence of monetary policy effectiveness. Importantly, while the fragility index is
constructed from past investment history, it has forward-looking predictive power and can

be easily measured using readily observable large firms’ data. Therefore, the fragility index

can potentially contribute to optimal monetary policy design in practice.

5.2 Testing the policy implications from the data

The model predicts that the monetary policy effect on the investment response is lower

for the high fragility states. To empirically test this model prediction, I use the quarterly
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monetary policy shock series and the fragility index as in Section The regression

specification is as follows:

gl = a+ BIMP,_j, + BodTFP; + € (38)

The dependent variable g/ is the aggregate investment growth rate. dT'F P, is the utilization-
adjusted aggregate TFP growth rate from Fernald (2014). The aggregate-level regression
is subject to timing complications. A subtle mixed lead-lag relationship exists between
monetary policy implementation and investment accounting. Therefore, I consider a lag
of four quarters (h = 4) for the monetary policy shock and further lags (h = 5,6) for ro-
bustness check. Table 8 reports the regression results conditional on the periods with high
(first three columns) and low fragilities (last three columns) measured at each period con-
temporaneously. High and low fragility periods are the top 40% and bottom 40% fragility
index periods among the whole sample.?® The responsiveness of aggregate investment is
statistically not distinguishable from zero during high fragility periods. However, during
the low fragility periods, the aggregate investment significantly negatively responds to mon-
etary policy shocks, and the goodness of fit substantially improves. These empirical results
support the model’s equilibrium prediction at the macro level.

Additionally, I also show that the extensive-margin response of investment at the firm
level is substantially muted during high fragility periods in Table .13 of Appendix I.5. This

evidence substantiates the model prediction from the firm-level angle.

6 Concluding remarks

This paper analyzes the endogenous state dependence in aggregate investment dynamics
driven by synchronized lumpy investments of large firms. Following a surge of large firms’

lumpy investments, an economy becomes substantially more fragile to negative aggregate

35To ensure a sufficient number of observations, I use the aggregate time series at the quarterly frequency.
The sample period covers from the first quarter of 1991 to the last quarter of 2009.
36The result stays unaffected over the different choices of the cutoffs around 40%.
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Table 8: State-dependent monetary policy effectiveness

Dependent variable: g/ (%)

High fragility Low fragility

h=4 h=5 h==6 h=4 h=5 h==6
M Prightt—n 0.528  0.222 0.380  -0.530 -0.683  -0.643

(0.47) (0.399) (0.342) (0.353) (0.325) (0.318)
Obs. 28 28 28 28 28 28
R? 0.056  0.020 0.055 0.155 0.218 0.208
Constant Yes Yes Yes Yes Yes Yes
TFP growth control  Yes Yes Yes Yes Yes Yes

Notes: The dependent variable is the aggregate investment growth rate from NIPA. Independent
variables include the monetary policy shock and the TFP growth rate from Fernald (2014). h indicates
the lagged timing (in quarter) of the monetary policy shock. High fragility periods refer to the top
40% of the sample periods in terms of fragility, and the low fragility periods are the bottom 40%.
shocks. The economic significance of this channel is quantified in a heterogeneous-firm real
business cycle model in which the cross-section of the elasticities of firm-level investment is
matched with the empirical estimates. In the model, aggregate investment features signifi-
cant state dependence in the interest elasticities, driven by fragility index fluctuations. This
implies that after a surge of large firms’ lumpy investments, the effectiveness of monetary
policy can substantially fall due to the lowered interest elasticity of aggregate investment.
These findings open new avenues for policy design. Since general equilibrium forces only
partially smooth firm-level investment timing, policymakers could mitigate aggregate fluc-
tuations by preventing excessive synchronization among large firms. Crucially, this paper’s
results demonstrate that both the timing and targeting of such policies matter. Future
work could explore how targeted investment credits or other interventions might optimally

smooth investment cycles, particularly for large firms whose synchronized actions drive

fragility.
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