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A Firm-level interest-elasticity in the existing

model and the data

In this section, I theoretically and quantitatively investigate how the existing

models predict the interest-elasticities of large and small firms. Especially, I

study the role of convex and fixed adjustment costs on the cross-section of the

interest-elasticities.

A.1 A two-period model with a convex adjustment cost

Consider a firm that is given capital stock k and productivity z. For simplicity,

I assume a firm lives only for two periods. A firm’s investment is subject to

a standard convex adjustment cost. A firm produces business output using a

concave production function, f(z, k) = zkα.1 The idiosyncratic productivity

follows a Markov chain, z′|z ∼ Γ . Then, the problem of firm-level investment

can be summarized as follows:

max
I

−I − µ

2

(
I

k

)2

k + qEzz′((1− δ)k + I)α

where I is the investment; µ is the convex adjustment cost parameter; z′ is

the future productivity; α ∈ (0, 1) is the span of control parameter; q is the

discount factor. A variation in q is equivalent to the change in the interest rate.

The first-order condition with respect to investment I leads to the following

inter-temporal optimality condition:

1 + µ

(
I∗

k

)
= qEz′α((1− δ)k + I∗)α−1 (1)

1For simplicity, I assume the optimal labor demand is implicitly considered in the pro-
duction function.
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Taking a log on both sides and using an approximation of log(1 + x) ≊ x

for small x, Equation (1) can be reduced into the following form:2

µ

(
I∗

k

)
≊ log(q) + log(Ez′α) + (α− 1)log(k) + (α− 1)

(
I∗

k
− δ

)

Then, I re-arrange the terms to obtain the following equation:

I∗

k
≊ A(µ)log(q) +B(µ, k) (2)

where A(µ) = 1
µ+(1−α) and B(µ, k) = A(µ)(log(Ez′α)+(α−1)log(k)−(α−1)δ).

It is worth noting that the second term on the right-hand side, B(µ, k) does

not play any role in the response of investment to the change in q. Equation

(2) provides rich implications about the response of investment to the change

in q.

First, Equation (2) implies that the investment-to-capital ratio positively

(negatively) responds to an increase in q (decrease in r). This is because

an increase in q makes future production more profitable to a firm, leaving

greater investment motivation for the firm. This is formally proven without

an approximation in Lemma 3 in Appendix G.1.

Second, Equation (2) implies that the firm-level interest-elasticity increases

in size. To clearly present the implication, I multiply k on both sides of

Equation (2), and I take partial derivatives with respect to k and q on both

2I use the following sub-step: log(k(1 − δ) + I∗) = log
(
k
(
(1− δ) + I∗

k

))
= log(k) +

log
(
(1− δ) + I∗

k

)
≊ log(k)− δ + I∗

k
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sides to get

∂2

∂q∂k
I∗ ≊ A(µ)

∂2

∂q∂k
klog(q) = A(µ)︸ ︷︷ ︸

>0

1

q︸︷︷︸
>0

> 0.

The inequality above holds for any µ > 0. In a model without the convex

adjustment cost, the same equation could be derived with µ = 0. In the

following statement, I formally show that the interest sensitivity of investment,

∂logI∗

∂q
, increases in size k.

Proposition 1 (Size-monotonicity in the interest-elasticity).

Given µ > 0, the following inequalities holds:

(i)
∂

∂k

(
∂k∗

∂q

)
> 0 for ∀k > 0

(ii)
∂

∂k

(
∂logk∗

∂q

)
> 0 for ∀k > 0

(iii)
∂

∂k

(
∂I∗

∂q

)
> 0 for ∀k > 0

(iv)
∂

∂k

(
∂logI∗

∂q

)
> 0 if I∗ > 0.

Proof. See Appendix G.1 ■

The result of Proposition 4 is contradictory to the empirical findings in

Zwick and Mahon (2017). According to the paper, the large firms’ interest-

elasticities are significantly smaller than those of the small firms.3 From the

fact that A(µ) decreases in µ, a large µ can mitigate the counterfactually di-

verged elasticity ranking, but it cannot flip the order. Therefore, a model with

3Zwick and Mahon (2017) defines large firms as the top 30% firms in the sales distribution
and the small firms as bottom 30% in the sales distribution. Under this definition, the
elasticity ratio between small and large firms is around 2.
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convex adjustment cost only cannot be a proper model to study the role of

large firms’ investments on the business cycle. This theoretical prediction will

be quantitatively verified in the following section’s comparison of the elastici-

ties in the infinite period problem.

Third, Equation (2) implies that the elasticity of firm-level investment de-

creases in µ, as A(µ) decreases in µ. This is a consistent theoretical prediction

with the computational outcomes in Winberry (2021) and Koby and Wolf

(2020), which argues that the convex adjustment cost helps the elasticity of

the average investment be lowered to the empirical estimate. Intuitively, the

higher the convex adjustment cost parameter, the higher the marginal cost

of adjustment, leaving the marginal response to a change in q costlier. This

prediction is formally proved in the following proposition without the approx-

imation:

Proposition 2 (Elasticity dampening effect).

Given µ > 0, if I∗ > 0, the following statements hold:

(i)
∂

∂µ

(
∂k∗

∂q

)
< 0

(ii)
∂

∂µ

(
∂logk∗

∂q

)
< 0

(iii)
∂

∂µ

(
∂I∗

∂q

)
< 0

(iv)
∂

∂µ

(
∂logI∗

∂q

)≤ 0 if 1
1−δ ≥ µ

> 0 if 1
1−δ < µ

.

Proof. See Appendix G.1 ■

In the last statement of Proposition 5, the response of investment to q

in per cent can increase in µ if µ is sufficiently large. This is due to the
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convex adjustment parameter’s dominant shrinking force on the level of the

denominator in 1
I∗
∂I∗

∂q
= ∂logI∗

∂q
.

To sum up, the convex adjustment cost is helpful for controlling the av-

erage elasticities of firm-level investment. However, it does not help flip the

counterfactual ranking of elasticities between large and small firms.

A.2 A two-period model with a fixed adjustment cost

Now I consider a two-period model where a firm needs to pay a fixed adjust-

ment cost ξ ∼ Unif [0, ξ] to invest.4 If a firm does not pay the fixed cost, the

firm’s capital stock simply depreciates at the rate of δ. Except that the convex

adjustment cost is replaced by the fixed cost, the model is the same as the one

in the previous section.

I define ξ∗(k, q) as the threshold of adjustment with respect to the shock

realization, ξ as follows:

ξ∗(k, q) := −I∗ + qEzz′((1− δ)k + I∗)α︸ ︷︷ ︸
Net benefit of capital adjustment

− qEzz′((1− δ)k)α︸ ︷︷ ︸
Net benefit of inaction

.

Thus, a firm invests if ξ∗(k, q) > ξ. Then, I define ψ(k, q) as a probability of

adjustment as follows:

ψ(k, q) :=
min{ξ∗(k, q), ξ}

ξ
.

The ex-ante investment, Î can be characterized in the following form:

Î = ψ(k, q)I∗

4The random shock assumption is following Khan and Thomas (2008).
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where I∗ is unconstrained optimal level of investment that satisfies the first-

order condition (1) under µ = 0.5 The interest-elasticity of the ex-ante invest-

ment Î depends on how both ψ(k, q) and I∗ respond to a change in q. Then,

I define a cutoff k̂(q) = k∗

1−δ , where a firm with k greater than this threshold

makes a negative investment. In Lemma 5 of Appendix G.3, I formally show

that such k̂ uniquely exists given q. The following decomposition holds for

∀k ∈ (0, k̂(q)):6

∂

∂q
log(Î) =

∂

∂q
log(ψ(k, q)) [Extensive-margin responsiveness]

+
∂

∂q
log(I∗) [Intensive-margin responsiveness]

The average response of firm-level investment per cent is additively separable

into extensive and intensive-margin responsiveness. As the intensive margin

has been studied in the previous section, I focus on the extensive-margin re-

sponsiveness in this section.

In Lemma 6, I show that ψ(k, q) increases in q. This is because a higher

discount factor leads to a greater discounted future profit, leaving the marginal

benefit of investment greater. Therefore, firms respond to an interest rate

change in both extensive and intensive margin in the same direction. However,

when it comes to the rankings of extensive-margin elasticity over the size, the

theoretical prediction in the extensive margin diverges from the one in the

intensive margin.

5For the simplicity of the proofs, I assume µ = 0 for the model with a fixed cost.
6We focus only on firms that make positive investments as in the empirical specification

in Zwick and Mahon (2017). Therefore, the extensive-margin transition from non-adjuster
to adjuster is ignored. However, the transition in the opposite direction is counted.

8



To understand the cross-sectional ranking of the extensive-margin interest-

elasticities, I decompose the partial derivative of log(ψ(k, q)) with respect to

q and k for ∀k ∈ (0, k̂(q)) as follows:

∂

∂k

∂

∂q
log(ψ(k, q)) =

∂

∂k

∂

∂q
log(ξ∗(k, q))

=
∂

∂k

∂
∂q
ξ∗(k, q)

ξ∗(k, q)
(3)

= −
∂ξ∗(k,q)
∂k

∂ξ∗(k,q)
∂q

ξ∗(k, q)2︸ ︷︷ ︸
Denominator effect (> 0)

+

∂2ξ∗(k,q)
∂q∂k

ξ∗(k, q)︸ ︷︷ ︸
Direct effect (< 0)

(4)

In the following proposition, I determine the sign of each component in the

decomposition.

Proposition 3 (The effect of the firm size and the price on the adjustment

probability).

For ∀k s.t. ξ∗(k, q) < ξ(q),

∂ξ∗(k, q)

∂k

∂ξ∗(k, q)

∂q
< 0 and

∂

∂k

∂

∂q
ξ∗(k, q) < 0.

Proof. See Appendix G.3. ■

According to Proposition 6, the first term of the right-hand side in Equa-

tion (4) is positive while the second term is negative. In other words, as the

size of a firm increases, the magnitude of the change in the adjustment proba-

bility (the numerator of (3)) decreases, but at the same time, the adjustment

probability also decreases (the denominator of (3)). Therefore, the ranking of

the investment response in the extensive margin in per cent across the firm

size cannot be determined.
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To sum up, the fixed cost affects the ex-ante investment response through

the extensive margin. When measured in the absolute value, the ranking of

the interest-elasticity in the extensive margin decreases in firm size. However,

when measured in per cent, the ranking becomes unclear due to the coun-

tervailing force from the interest rate effect on the level of the adjustment

probability. The ex-ante investment elasticity is determined by both the in-

tensive and extensive margin responsiveness. From the previous section, the

ranking of the intensive margin responsiveness is counterfactually flipped in

the model. Therefore, to correct the counterfactual ranking by including the

fixed cost, the extensive-margin elasticity needs to be substantially lowered

for large firms in the model with both convex and fixed adjustment costs.

In the next section, I quantitatively investigate the ranking of the large and

small firms’ interest-elasticities under the infinite-period models with different

adjustment costs.

A.3 Comparison of the semi-elasticities across models

This section compares the semi-elasticities of firm-level investment across dif-

ferent models. I consider three different models: 1) a model with fixed cost

(Khan and Thomas, 2008); 2) a model with convex adjustment cost; 3) a model

with both fixed and convex adjustment cost (Winberry, 2021). As each model

is based on the description of the reference paper, I abstract the detailed expla-

nation of each model. The models are calibrated to match the cross-sectional

average of the investment-to-capital ratio and the cross-sectional average spike

6The model with convex adjustment cost is a simpler version of the model with both
fixed and convex adjustment cost, where the fixed cost is discarded. The models do not
include the habit formation in the household utility differently from Winberry (2021).
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ratio.7 Additionally, for the model with both fixed and convex adjustment

costs, I matched the cross-sectional dispersion of the investment-to-capital ra-

tio.

Table A.1 reports the semi-elasticities of firm-level investments for different

groups across different models. The elasticities are measured by the average

contemporaneous change in the firm-level investment in per cent from the

steady-state when the interest rate changes by 1%.8 In particular, I calculate

the average between the elasticity measured when the interest rate increases by

1% and the one measured when the interest rate decreases by 1% to address the

asymmetry in the responses to the positive and negative interest rate shocks.

The average interest-elasticity of group j ∈ {All, Small, Large} is defined as

follows:

Elasticityjt =

∫
{Iijt>0}∆log(Iijtψijt + Icijt(1− ψijt))dΦj

∆rt

where ψijt is the extensive-margin adjustment probability; Iijt is then invest-

ment after fixed cost is paid and Icijt is the investment when the fixed cost is

unpaid; Φj is the joint distribution of firms conditional on group j.

The elasticity of the spike ratio of group j is defined as the average con-

temporaneous change in the fraction of firms investing greater than 20% of

the existing capital stock when the interest rate changes by 1%.

ElasticitySpikeRatiojt =

∫
{Iijt>0}∆I

{
Iijtψijt+I

c
ijt(1−ψijt)

kijt
> 0.2

}
dΦj

∆rt

7The target moment is the same as in the baseline model calibration, which is reported
in Table 1.

8The elasticity is measured in the partial equilibrium as in Winberry (2021) and Koby
and Wolf (2020).
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According to Table A.1, in any of the three models, the interest-elasticity of

investment is greater in large firms than in small firms. By including both fixed

and convex adjustment costs, the counterfactual elasticity divergence is slightly

mitigated, as can be seen from the lowest small-to-large ratio, 0.62. Still, the

ratio is substantially lower than the empirical ratio of 1.95, as reported in the

fourth column. This is due to a dominant intensive-margin impact that is

proved in Proposition 4.

Consistent with findings from the literature, the average interest-elasticity

is in the empirically-supported range when convex adjustment cost is included.

When both fixed and convex adjustment costs are included, the average elas-

ticity is around 5, satisfying an empirical upper bound of 7.2 from Zwick and

Mahon (2017).

Table A.1: Semi-elasticity comparison across models

Quad. Convex only Convex + Fixed Data

Investment
All 6 5.85 6.4 7.2
Small 6.55 5.62 4.9
Large 4.67 6.82 10.06
S/L ratio 1.4 0.82 0.49 1.95

Spike ratio
All 1.21 1.28 1.46
Small 1.85 1.56 2.92
Large 0.41 0.6 0.73
S/L ratio 4.45 2.58 4.02

Notes: The semi-elasticities of investment variables are computed from contempo-
raneous investment response to an interest rate change in the partial equilibrium.
To address the asymmetry between responses to the positive and negative interest
rate shocks, I report the average responses to the positive 1% and negative 1%
interest rate changes.

I also analyze the spike ratio’s elasticity as this elasticity can be directly
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measured in the data and can guide us on the missing component in the

model for capturing the cross-section of the empirically supported interest-

elasticities. Based on the comparison of the model-implied elasticities and

the data estimates in the next section, I discuss how the models need to be

improved.

A.4 Firm-level interest-elasticities of investments in the

data

In this section, I empirically estimate the elasticity of firm-level investment

using firm-level balance sheet data and monetary policy shocks in the litera-

ture. Prior research papers in the literature have provided the well-identified

interest-elasticities of firm-level investments, but those estimates are not in-

formative enough to pin down the missing component in the existing model

frameworks. For this, I estimate the elasticities of small and large firms’ spike

ratios to develop a model with realistic firm-level investment.

I estimate the following regression separately for large firms and small

firms:

f(kit, kit+1) = βMPt + αi + αsy + Controlsit + ϵit

where MPt is the monetary policy shock; αi is firm fixed effect; αsy is sector-

year fixed effect. The control variables include lagged current account (ACTt−1),

lagged total debt (DTt−1), and operating profit (OIBDPt) normalized by

lagged total asset (ATt−1), log of lagged capital stock, and log of employ-

ment (EMPt). The standard errors are two-way clustered across firms and

years.
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Table A.2: Investment sensitivities to the monetary policy shocks

Dependent variables:

log(Iit) I{ Iit
kit
> 0.2}

L S L S

MPT ight,t -2.201 -7.025 -0.870 -2.072
(0.606) (2.41) (0.367) (0.676)

Obs. 29,400 7,903 29,400 7,903
R2 0.929 0.791 0.603 0.558
Firm FE Yes Yes Yes Yes
Sect.-year FE Yes Yes Yes Yes
Firm-level ctrl. Yes Yes Yes Yes
Two-way cl. Yes Yes Yes Yes

Notes: The independent variables include monetary policy shocks, fixed effects
(firm and sector-year), and firm-level control variables (lagged current account
(ACTt−1), lagged total debt (DTt−1), and operating profit (OIBDPt) normalized
by lagged total asset (ATt−1), log of lagged capital stock, and log of employment
(EMPt)). The numbers in the bracket are the standard errors. The standard
errors are clustered two-way by firm and year.

Table A.2 reports the coefficient of monetary policy shock (MPt) for large

and small firms across different choices of dependent variables.9 As can be

seen from the first two columns, the elasticity of the investment is significantly

lower in large firms than in small firms. This is consistent with the empirical

results in the literature and contradictory to the model-implied elasticities in

the previous section. Also, the sensitivity of the spike ratio is significantly

lower in large firms than small firms, as reported in the third and fourth

columns.10

The differences in the elasticities in Table A.1 and Table A.2 sharply indi-

cate that the existing models with fixed and convex adjustment costs cannot

9I check the robustness of result using a different cutoff 10% than 20% in Table B.3.
10Two estimates are statistically different under the significance level of 0.05.
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correctly capture the ranking of interest-elasticities between large and small

firms. Therefore, a new model is needed to study the role of large firms’ in-

vestments over the business cycle. Then, a question still remains about which

component of the existing model needs to be improved to capture the empir-

ical relationship. There are broadly two options: lowering either intensive or

extensive margin elasticities of large firms.

On this issue, the elasticity of spike ratio gives an answer. I set the model

with both fixed and convex adjustment costs as a benchmark model. From the

comparison of the interest-elasticities of spike ratios between the benchmark

model and the data, the large firms’ spike ratio needs to be less elastic, and

small firms’ spike ratio needs to be more elastic than in the benchmark model

to match the empirical counterpart. Therefore, the extensive-margin elasticity

needs to be improved from the benchmark model. In the following section, I

develop a heterogeneous-firm real business cycle model where the elasticities

of investments and spike ratios are at the empirically-supported level through

the modification in the extensive-margin investment patterns of the benchmark

model.
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B Monetary policy shock

I construct an exogenous monetary policy shock following Ottonello and Win-

berry (2020) and Jeenas (2018). The monetary policy shock is obtained by

time aggregating high-frequency monetary policy shock identified from the un-

expected jump (drop) in the federal funds rate during a 30-minutes window

around the FOMC announcement.11 To capture the unexpected component in

the federal funds rate, I use the change in the rate implied by the current-month

federal funds futures contract. All the data on the timings of the FOMC an-

nouncement and the high-frequency surprise are from Gurkaynak et al. (2005)

and Gorodnichenko and Weber (2016). The sample period covers from March

1990 until December 2009. I follow the convention that the positive monetary

policy shock is an unexpected increase in the federal funds futures rate, so it

implies the contractionary monetary policy.

To match the data frequency between the firm-level data and the mone-

tary policy shock, I time aggregate the monetary policy shocks. Specifically,

I compute the one-year backward weighted average monetary policy shock at

each firm’s financial year end. The weight of each surprise is determined by

the number of days between the corresponding FOMC announcement and the

next FOMC announcement.12 If the next FOMC announcement was made

after the financial year end, the days are counted until the financial year end.

This data joining process matches a firm’s balance sheet information and the

monetary policy shock at the same financial year. The weighted moving aver-

age monetary policy shock is plotted in Figure B.1.

11The result is robust over the choice of a wider window (one-hour window) as reported
in Table B.4.

12A higher weight is assigned for a monetary policy shock when there was greater amount
of time for a firm to respond to the shock (Ottonello and Winberry, 2020).
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In the regression analysis, large firms and small firms are defined as in

Section 2. I consider log of firm-level investment, log(Iit) and binary indica-

tor of investment greater than 20% of existing capital stock, I{ Iit
kit

> 0.2} as

dependent variables in the regression.

Figure B.1: One-year moving average monetary policy shock: March 1990 ∼
December 2009

−5

0

5

1995 2000 2005 2010
Time

M
P

 S
ho

ck
 (

b.
p.

)

Recession

Types

MP Shock − Tight

MP Shock − Wide

Notes: The monetary policy shocks are obtained by time aggregating high-frequency mon-
etary policy shocks identified from the unexpected jump (drop) in the federal funds rate
during 30-minutes (Tight) and one-hour (Wide) windows around the FOMC announcement.
To capture the unexpected component in the federal funds rate, I use the change in the rate
implied by the current-month federal funds futures contract. All the data on the timings of
the FOMC announcement and the high-frequency surprise are from Gurkaynak et al. (2005)
and Gorodnichenko and Weber (2016).
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B.2 Semi-elasticity: The full table

Table B.5 compares the semi-elasticities of investment to the interest rate

change for different models. The first column is the result from the calibrated

baseline model; the second is from the model with fixed adjustment cost only;

the third is from the model with convex adjustment cost only; the fourth is

from the benchmark model with convex and fixed adjustment costs; the fifth

is from the model with convex and linearly size-dependent fixed adjustment

costs; the last is from the model with convex and quadratic size-dependent

fixed adjustment costs.13

The first four rows of the table report the elasticities of investment condi-

tional on Iijt > 0 where i is a firm index, j is a size group indicator, and t is the

time subscript; the next four rows report the extensive-margin elasticities; the

following four rows report the intensive-margin elasticities; the last four rows

report the spike ratio elasticities.14 The elasticity of investment is as defined

in section A.3. I calculate the average between the elasticity measured when

the interest rate increases by 1% and the one measured when the interest rate

decreases by 1% to address the asymmetry in the responses to the positive

and negative interest rate shocks.

In the table, there are two additional interest-elasticities to be defined.

The extensive-margin elasticity of group j ∈ {All, Small, Large} is defined as

the average contemporaneous change in the firm-level investment driven by

extensive-margin probability changes in per cent from the steady-state when

13Each model is calibrated to match the same moments as in the baseline calibration,
except for the cross-sectional elasticity ratio. For the models with fixed adjustment cost
only and with a convex adjustment costs only, I did not match the cross-sectional dispersion
of iit/kit as these models have one less parameter than the others.

14Following Zwick and Mahon (2017), I define the elasticity conditional on Iijt > 0 as
investment elasticity.
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the interest rate changes by 1%. Therefore, the investment policy functions

are fixed at the steady-state level, while the extensive-margin probabilities

deviate from the steady-state:

Elasticityextjt =

∫
{Iijt>0}∆log(I

ss
ijtψijt + Iss,cijt (1− ψijt))dΦj

∆rt

where ψijt is the extensive-margin adjustment probability; Iijt is then invest-

ment after fixed cost is paid and Icijt is the investment when the fixed cost

is unpaid; Φj is the joint distribution of firms conditional on group j. The

intensive-margin elasticity of group j is defined as the average contempora-

neous change in the firm-level investment driven by investment magnitude

changes in per cent from the steady-state when the interest rate changes by

1%. Therefore, the extensive-margin probability is fixed at the steady-state

level, while the investment policy functions deviate from the steady-state.

Elasticityintjt =

∫
{Iijt>0}∆log(Iijtψ

ss
ijt + Icijt(1− ψssijt))dΦj

∆rt
.

According to Table B.5, the aggregate investment elasticity of 6.63 is con-

sistent with the empirical findings in Zwick and Mahon (2017); the small-to-

large elasticity ratio of 2.13 is also close to the empirical level. The response

of investment is further decomposed into the extensive and intensive margins.

Each margin accounts for an almost identical portion of the total response in

the baseline model. However, the small-to-large elasticity ratios are greater in

the extensive margin response than the intensive margin.

As can be seen from the columns other than the second and the third

in Table B.5, the aggregate investment elasticities are well-matched with the

empirical level once we consider both convex and fixed adjustment costs. Es-
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Table B.5: Semi-elasticity of investment across the models and the decompo-
sition

Baseline Quad. Linear Const. No fixed KT2008

Investment
All 6.6 6 5.85 6.4 33.9 256.8
Small 8.93 6.55 5.62 4.9 12.49 179.54
Large 4.92 4.67 6.82 10.06 81.86 403.02
S/L ratio 1.81 1.4 0.82 0.49 0.15 0.45

Ext. margin
All 3.44 3.19 3.09 3 68.38
Small 4.91 4.22 3.75 3.27 79.14
Large 1.97 2.18 2.41 2.68 63.42
S/L ratio 2.49 1.94 1.56 1.22 1.25

Int. margin
All 3.15 2.8 2.76 3.4 33.9 72.59
Small 4 2.32 1.86 1.62 12.49 62.61
Large 2.95 2.49 4.4 7.38 81.86 90.43
S/L ratio 1.36 0.93 0.42 0.22 0.15 0.69

Spike ratio
All 1.46 1.21 1.28 1.46 1.8 22.09
Small 2.82 1.85 1.56 2.92 1.8 27.95
Large 0.49 0.41 0.6 0.73 1.6 13.35
S/L ratio 5.76 4.45 2.58 4.02 1.13 2.09

Notes: The semi-elasticities of investment variables are computed from contemporaneous
response to an interest rate change in the partial equilibrium. To address the asymmetry
between responses to the positive and negative interest rate shocks, I report the average
responses to the positive 1% and negative 1% interest rate changes.

pecially, the inclusion of convex adjustment cost dramatically dampens the

aggregate elasticity, as can be seen from the aggregate elasticity in the third

column compared to that of the second column (Winberry, 2021; Koby and

Wolf, 2020). Again, this is consistent with the theoretical prediction of Propo-

sition 5.

The cross-sectional elasticity ratio between small and large in other models

than the baseline cannot match the empirical estimate of 1.95 from Zwick and

Mahon (2017). However, as the fixed cost becomes size-dependent and as
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the intra-firm interdependence across establishments rises, the cross-sectional

elasticity ratio increases. From the middle and lower part of the table, the size-

dependence and the intra-firm linkages increase not only the extensive-margin

S/L ratio but the intensive-margin S/L ratio. This is due to the selection effect

on those large firms that remain to adjust despite the higher fixed cost.
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C State-dependent sensitivity of the aggregate

investment growth: Full table

Table C.6: State-dependent sensitivity of the aggregate investment growth:
full table

Dependent variable: ∆log(It) (p.p.)

(−) OutputShockt (+) OutputShockt

Model Data Model Data

(1) (2) (3) (4) (5) (6) (7) (8)

Shockt 9.589 9.389 7.193 5.818 8.671 8.490 4.483 6.937
(0.083) (0.066) (1.213) (1.338) (0.084) (0.064) (1.123) (1.221)

Shockt 1.537 2.430 -2.011 -1.486
× Fragilityt (0.042) (1.311) (0.045) (0.495)

Constant Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2,296 2,296 16 16 2,706 2,705 18 18
R2 0.853 0.908 0.730 0.790 0.730 0.884 0.515 0.705
Adjusted R2 0.853 0.908 0.709 0.755 0.709 0.884 0.483 0.663

Notes: The dependent variable is the growth rate of aggregate investment. The independent
variables are output shocks obtained from fitting output series into AR(1) process and the
interaction between the output shock and the fragility index. The fragility index is based
on the years from the last lumpy investment of large firms. The first two columns report the
regression coefficients from the simulated data when the negative output shock hits. The
third and fourth columns report the regression coefficients using Compustat data when the
negative output shock hits. The fifth and sixths columns report the regression coefficients
from the simulated data when the positive output shock hits. The last two columns report
the regression coefficients using Compustat data when the positive output shock hits. The
numbers in the brackets are standard errors.
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D Solution method: The repeated transition

method

This section explains the solution method I use to compute the recursive com-

petitive equilibrium. I use the repeated transition method, which I concur-

rently developed for the computation of nonlinear aggregate dynamics under

aggregate uncertainty in Lee (2023). As highlighted in Bachmann et al. (2013),

the strong general equilibrium effect significantly contributes to the linearity in

the dynamics of aggregate allocations. However, once the model captures real-

istic interest-elasticity, the general equilibrium effect is necessarily weakened,

leaving the aggregate dynamics highly nonlinear. Due to this highly nonlinear

aggregate dynamics in general equilibrium, there are two layers of difficulties

in using the algorithm of Krusell and Smith (1998). The first is difficulty in

choosing a sufficient statistics for the aggregate dynamics. The model’s non-

linear aggregate dynamics might not be sufficiently explained by the moves in

aggregate capital stocks, unlike Khan and Thomas (2008). The second diffi-

culty is in setting the parametric form in the law of motion. This problem

interacts with the former difficulty because even correctly chosen sufficient

statistics would not give accurate computation results due to the wrong spec-

ification of the functional form of the law of motion. Therefore, it is almost

impossible to jointly identify the correct sufficient statistics and functional

form in the law of motion.

The repeated transition method departs from the state-space-based ap-

proach, so it does not require a researcher to specify the law of motion. The

method is based on the ergodic theorem: if a simulated path is long enough,

all the possible equilibrium allocations should be realized on the path. Then,
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by simply utilizing the realized allocations including the value functions, the

method accurately constructs the rationally expected future value functions

at each time on the simulated path.15

Using this method, I compute the predicted aggregate allocations, which

the time series of the simulated aggregate allocations almost perfectly con-

verges to. And this time series of the predicted aggregate allocations is not

based on a parametric form of the law of motion in a state-space represen-

tation. Figure D.2 compares the time series of the predicted allocations and

the simulated allocations.16 In the figure, panel (a) shows the predicted aggre-

gate dynamics and the simulated dynamics of the marginal utility, pt. These

two dynamics converged to each other with an extremely small error, as can

be seen in the solid line in panel (c). However, if the dynamics of simulated

marginal utility are fitted into the log-linear law of motion in the contempo-

raneous capital stock Kt, the prediction error can become substantially large

as in the dashed line in panel (c). A similar pattern is observed in the ag-

gregate dynamics of aggregate capital stock Kt in panel (b). The simulated

and predicted paths for Kt are computed at extremely high accuracy with the

repeated transition method, while the log-linear fitting leads to a significant

prediction error as in panel (d).

Then, I compare the fitness of different specifications of the law of motion

by fitting the equilibrium dynamics into each of them.17 Table D.7 and Table

D.8 report the fitness of the different laws of motion of pt and Kt, respectively.

15As the method relies on the dynamics over the simulated aggregate shock path, it is
similar to Boppart et al. (2018). However, the repeated transition method departs from the
perfect foresight and is a global solution method.

16This figure is the fundamental accuracy plot suggested in Den Haan (2010).
17I compare only the fitness of the law of motion to the converged dynamics of equilibrium

allocations. Therefore, if the model is solved based on each of the laws of motion, the implied
dynamics might display even greater prediction errors than the reported level.
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When the law of motion includes only a log of contemporaneous capital stock

Kt (specification (1)), the prediction errors remain large, indicating the non-

linear nature of the equilibrium dynamics.18 However, once the law of motion

includes the fragility index in the law of motion (specification (2)), which I

define in Section 4.4, the fitness significantly improves for the dynamics of pt.

However, it does not make a significant change in the fitness for the dynamics

of Kt. Finally, if the law of motion includes contemporaneous and lagged cap-

ital stocks up to three lags in a non-parametric form (specification (3)), the

fitness substantially improves from the basic log-linear specification for both

pt and Kt.

Table D.7: The fitness comparison across the different law of motions: pt

Dependent variables: log(pt)

R2 max(|error|)(%) mean(|error|)(%)

(1) (2) (3) (1) (2) (3) (1) (2) (3)

A1 0.9950 0.9989 0.9997 0.1599 0.0903 0.0405 0.0628 0.0251 0.0135
A2 0.9959 0.9995 0.9999 0.3146 0.1203 0.0685 0.0610 0.0223 0.0098
A3 0.9957 0.9995 0.9999 0.3160 0.1434 0.0617 0.0661 0.0218 0.0108
A4 0.9952 0.9994 0.9999 0.3934 0.1091 0.0537 0.0670 0.0234 0.0109
A5 0.9952 0.9994 0.9999 0.3274 0.1360 0.0546 0.0699 0.0243 0.0117
A6 0.9957 0.9994 0.9999 0.2560 0.1310 0.0517 0.0639 0.0246 0.0114
A7 0.9928 0.9991 0.9998 0.1668 0.1030 0.0386 0.0681 0.0179 0.0108

Notes: The table reports R2, the maximum absolute prediction error, and the
mean absolute prediction error by different law of motion (columns) and aggregate
states (rows). Specification (1) includes a constant and log of contemporaneous
capital stock as a independent variable; Specification (2) includes a constant, log of
contemporaneous capital stocks, and log of fragility index as independent variables;
Specification (3) includes constant and contemporaneous and lagged capital stocks
up to three lags in a non-parametric form as independent variables.

18Den Haan (2010) points out that a slight deviation in R2 from unity such as R2 = 0.995
can imply a substantially large prediction error and significant nonlinearity.
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Figure D.2: Aggregate fluctuations in the marginal utility and the aggregate
capital stock

300 310 320 330 340 350 360 370 380 390 400
Time (year)

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Predicted
Realized

(a) Marginal utility, pt =
1
ct

300 310 320 330 340 350 360 370 380 390 400
Time (year)

0.85

0.9

0.95

1

1.05

1.1

Predicted
Realized

(b) Aggregate capital stock Kt

100 200 300 400 500 600 700 800 900
Time (year)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

P
er

ce
nt

ag
e 

de
vi

at
io

n 
(%

)

Repeated Transition Method
Log-linear fitting

(c) Prediction error in marginal utility
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(d) Prediction error in aggregate capital
stock

Notes: Panel (a) plots the rationally expected path and the simulated path of the marginal
utility. Panel (b) plots the rationally expected path and the simulated path of the aggregate
capital stock. Panel (c) plots the prediction errors in the marginal utility path from the
repeated transition method and the log-linear fitting. Panel (d) plots the prediction errors
in the aggregate capital stock path from the repeated transition method and the log-linear
fitting.
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Table D.8: The fitness comparison across the different law of motions: Kt+1

Dependent variables: log(Kt+1)

R2 max(|error|)(%) mean(|error|)(%)

(1) (2) (3) (1) (2) (3) (1) (2) (3)

A1 1.0000 1.0000 1.0000 0.0651 0.0650 0.0409 0.0117 0.0110 0.0091
A2 0.9999 0.9999 1.0000 0.1452 0.1454 0.0524 0.0198 0.0200 0.0071
A3 0.9999 0.9999 1.0000 0.3340 0.3358 0.0445 0.0191 0.0189 0.0072
A4 0.9999 0.9999 1.0000 0.2455 0.2451 0.0490 0.0211 0.0214 0.0077
A5 0.9999 0.9999 1.0000 0.2415 0.2412 0.0453 0.0222 0.0221 0.0084
A6 0.9999 0.9999 1.0000 0.1676 0.1733 0.0473 0.0194 0.0193 0.0085
A7 0.9998 0.9998 1.0000 0.1275 0.1239 0.0330 0.0168 0.0175 0.0116

Notes: The table reports R2, the maximum absolute prediction error, and the
mean absolute prediction error by different law of motion (columns) and aggregate
states (rows). Specification (1) includes a constant and log of contemporaneous
capital stock as a independent variable; Specification (2) includes a constant, log of
contemporaneous capital stocks, and log of fragility index as independent variables;
Specification (3) includes constant and contemporaneous and lagged capital stocks
up to three lags in a non-parametric form as independent variables.
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E Additional tables and figures

E.1 Conditional heteroskedasticity: Regression result

Table E.9: Residual volatility of the aggregate investment and spike ratios

Dependent variable: log(σ̂t)
Large Non-large

spiket−1 (%) 0.337 0.077
(0.138) (0.074)

Constant −4.131 −2.317
(1.290) (1.270)

Observations 35 35
R2 0.154 0.032
Adjusted R2 0.128 0.002

Notes: The dependent variable is the log absolute value of the residuals from fitting
the aggregate investment to capital ratio into AR(4) process. The independent
variables are the past average spike ratio, spiket−1, and the intercept.

spiket−1 is defined as follows:

spiket−1 :=
1

J

J−1∑
j=0

SpikeRatiot−1−j

SpikeRatiot :=
#Extensive-margin adjustmentt

#Firmst

where J is the number of past years to be included in the average. In the

reported result, I use J = 3. The result is robust over J = 1, 2, 4.
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E.2 Fixed parameters

Table E.10: Fixed Parameters

Parameters Description Value

Firm-side Fundamentals
α Capital share 0.2800
γ Labor share 0.6400
δ Depreciation rate 0.0900

Household
β Discount factor 0.9770
η Labor disutility parameter 2.4000

Aggregate TFP Process
ρA Persistence of aggregate TFP 0.8145

Notes: The fixed parameters are chosen at the level widely used in the relevant
literature. The household labor disutility parameter is set at the level where the
total labor supply becomes around one-third in the equilibrium. The persistence
of aggregate TFP is fixed at 0.8145 following Bachmann et al. (2013).
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E.3 Business cycle statistics

Table E.11: Business cycle statistics

Data Model

corr(Yt, Yt−1) 0.941 0.847
corr(It, It−1) 0.742 0.740
corr(Ct, Ct−1) 0.954 0.907
corr(It, Yt) 0.795 0.796
corr(Lt, Yt) 0.898 0.763
corr(Ct, Yt) 0.978 0.981
sd(Yt) 0.060 0.067
sd(It)/sd(Yt) 1.976 1.767
sd(Ct)/sd(Yt) 0.945 0.829

Notes: The business cycle statistics are obtained from the simulated data using the
dynamic stochastic general equilibrium allocations. All the variables are in log and
linearly detrended. The data counterpart is from National Income and Product
Accounts (NIPA) data.
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E.4 State-dependent responses of aggregate output

Figure E.3: State-dependent responses of aggregate output
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Notes: The vertical axis of the scatter plot is the instantaneous response of the
aggregate output to a negative one-standard-deviation TFP shock in percentage
point, and the horizontal axis is the fragility index measured in the unit of standard
deviation from the average. In each responses, contemporaneous and one-period-
prior aggregate TFP fixed effects are controlled. Using the histogram method in
Young (2010), firms are simulated for 5,000 periods (years) based on the dynamic
stochastic general equilibrium allocations. The fragility indices are calculated based
on the distribution of large firms.
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F Recursive competitive equilibrium

In this section, I define the recursive competitive equilibrium in the economy.

(gc, ga, glH , gk∗ , gkc , gξ∗ , gnd
, Ṽ , J̃ , R̃∗, R̃c, p, w,G,H) is a recursive competitive

equilibrium if the following conditions are satisfied.

1. gc, glH , Ṽ and ga, solves the household’s problem.

2. gk∗ , gkc , gξ∗ , gnd
, J̃ , R̃∗, and R̃c solve a firm’s problem.

3. Market Clearing:

(Labor Market) glH(Φ;S) =

∫ (
gnd

(k, z;S)

+

(
gξ∗(k, z;S)

ξ

)(
gξ∗(k, z;S)

2

)
kζ

)
dΦ

(Product Market) gc(Φ;S) =

∫ (
zAkαgnd

(k, z;S)γ

−
(
(gk∗(k, z;S)− (1− δ)k) + c(k, gk∗(k, z;S))

)
× gξ∗(k, z;S)

ξ

−
(
(gkc(k, z;S)− (1− δ)k) + c(k, gkc(k, z;S))

)
× 1− gξ∗(k, z;S)

ξ

)
dΦ
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4. Consistency Condition:19

(Consistency) GΦ(Φ) = H(Φ) = Φ′, where for ∀K ′ ⊆ K and z′ ∈ Z,

Φ′(K ′, z′) =

∫
Γz,z′

(
I{gk∗(k, z;S) ∈ K ′}gξ

∗(k, z;S)

ξ

+ I{gkc(k, z;S) ∈ K ′}1− gξ∗(k, z;S)

ξ

)
dΦ

19K and Z are the supports of the marginal distributions of capital and productivity
induced from Φ.
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G A theory of the interest-elasticity and the

firm size: Proofs

G.1 A model with convex adjustment cost : Proposi-

tions and proofs

Proposition 4 (Size-monotonicity in the interest-elasticity).

Given µ > 0, the following inequalities holds:

(i)
∂

∂k

(
∂k∗

∂q

)
> 0 for ∀k > 0

(ii)
∂

∂k

(
∂logk∗

∂q

)
> 0 for ∀k > 0

(iii)
∂

∂k

(
∂I∗

∂q

)
> 0 for ∀k > 0

(iv)
∂

∂k

(
∂logI∗

∂q

)
> 0 if I∗ > 0.

Proof.

log

(
1 + µ

(
I∗

k

))
= log (qEz′α) + (α− 1)log ((1− δ)k + I∗)

The equation above holds for all possible k and q. I take a partial derivative

with respect to q for both sides of the equation.

(
µ

k + µI∗

)
∂I∗

∂q
=

1

q
+ (α− 1)

1

(1− δ)k + I∗
∂I∗

∂q
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Rearranging the terms, I get the following equations:

(
µ

k + µI∗
+

1− α

(1− δ)k + I∗

)
∂I∗

∂q
=

1

q(
µ

k + µI∗
+

1− α

k∗

)
∂I∗

∂q
=

1

q
(5)

where k∗ = (1− δ)k + I∗. Then, I take a log for both sides.

log

(
µ

k + µI∗
+

1− α

k∗

)
+ log

(
∂I∗

∂q

)
= −log(q)

The equation above holds for all possible k and q. I take a partial derivative

with respect to k for both sides of the equation.

1
µ

k+µI∗
+ 1−α

k∗

(
− µ

(k + µI∗)2

(
1 + µ

∂I∗

∂k

)
− 1− α

k∗2
∂k∗

∂k

)
+

∂

∂k
log

(
∂I∗

∂q

)
= 0

Therefore,

∂

∂k
log

(
∂I∗

∂q

)
=

1
µ

k+µI∗
+ 1−α

k∗

(
µ

(k + µI∗)2

(
1 + µ

∂I∗

∂k

)
+

1− α

k∗2
∂k∗

∂k

)
.

Due to Lemma 1, all the terms on the right-hand side are positive except for(
1 + µ∂I

∗

∂k

)
. Thus, the following statement holds:

(
1 + µ

∂I∗

∂k

)
> 0 =⇒ ∂

∂k
log

(
∂I∗

∂q

)
> 0.

Going back to the inter-temporal optimality condition, I multiply k in the

both sides to have

k + µI∗ = qEz′α(k∗)α−1k.
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Then, I take a log and a partial derivative with respective to k. It leads to

1 + µ∂I
∗

∂k

k + µI∗
=

(α− 1)

k∗
∂k∗

∂k
+

1

k

=
1

k

(
(α− 1)

k

k∗
∂k∗

∂k
+ 1

)
=

1

k

(
1− (1− α)

∂logk∗

∂logk

)
.

From Lemma 2, ∂logk∗

∂logk
< 1. Also I assume α < 1. Therefore, the right-hand

side is positive. The denominator on the left-hand side is also positive because

k + µI∗ = qEz′α(k∗)α−1k > 0. Therefore, ∂
∂k
log
(
∂I∗

∂q

)
> 0. Then,

(iii)
∂

∂k

(
∂I∗

∂q

)
=

(
∂I∗

∂q

)
∂

∂k
log

(
∂I∗

∂q

)
> 0.

The right-hand side is positive because ∂I∗

∂q
> 0 from equation (5). This result

is formally stated in Lemma 3. As ∂I∗

∂q
= ∂k∗

∂q
, I conclude (i) ∂

∂k

(
∂k∗

∂q

)
> 0 for

∀k > 0.

Now I will prove (ii) ∂
∂k∂q

log(k∗) > 0 and (iv) ∂
∂k∂q

log(I∗) > 0.

From Equation (5), the following is true:

(
µ

k + µI∗
k∗ +

1− α

k∗
k∗
)

1

k∗
∂k∗

∂q
=

1

q

As ∂
∂k

(
∂log(k∗)

∂q

)
= ∂

∂k
1
k∗

(
∂k∗

∂q

)
,

(
µ

k
k∗

+ µ I
∗

k∗

+ 1− α

)
∂log(k∗)

∂q
=

1

q
.
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From I∗ = k∗ − (1− δ)k,

(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
∂log(k∗)

∂q
=

1

q
.

I take the partial derivatives with respect to k on both sides.

∂

∂k

(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
∂log(k∗)

∂q
+

(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
∂

∂k

∂log(k∗)

∂q
= 0.

By rearranging the terms, I obtain(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
︸ ︷︷ ︸

>0

∂

∂k

∂log(k∗)

∂q
= − ∂

∂k

(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
∂log(k∗)

∂q︸ ︷︷ ︸
>0

.

From Lemma 3, ∂log(k
∗)

∂q
= 1

k∗
∂k∗

∂q
= 1

k∗
∂I∗

∂q
> 0. Also,

(
µ

k−µ(1−δ)
k∗ +µ

+ 1− α

)
> 0.

Therefore, the sign of ∂
∂k

∂log(k∗)
∂q

is equal to the sign of− ∂
∂k

(
µ

k−µ(1−δ)
k∗ +µ

+ 1− α

)
.

Then, I investigate the sign of − ∂
∂k

(
µ

k−µ(1−δ)
k∗ +µ

+ 1− α

)
as follows:
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− ∂

∂k

(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
=

 µ(
k−µ(1−δ)

k∗
+ µ
)2
( 1

k∗
−

(k − µ(1− δ))∂k
∗

∂k

(k∗)2

)

=

 µ(
k−µ(1−δ)

k∗
+ µ
)2
 1

k∗

(
1−

(k − µ(1− δ))∂k
∗

∂k

k∗

)

=

 µ(
k−µ(1−δ)

k∗
+ µ
)2
 1

k∗

(
1−

(
1− µ(1− δ)

1

k

)
k

k∗
∂k∗

∂k

)

=

 µ(
k−µ(1−δ)

k∗
+ µ
)2
 1

k∗︸ ︷︷ ︸
>0

1−

<1︷ ︸︸ ︷(
1− µ(1− δ)

1

k

) >0,<1︷ ︸︸ ︷
∂logk∗

∂logk


︸ ︷︷ ︸

>0

> 0.

From Lemma 1 and Lemma 2, 0 < ∂logk∗

∂logk
< 1. Thus,

(ii)
∂

∂k

∂log(k∗)

∂q
> 0.

Similarly, we can derive the following equation from Equation (5),

(
µ

k
I∗

+ µ
+ (1− α)

I∗

k∗

)
︸ ︷︷ ︸

>0

∂

∂k

∂log(I∗)

∂q
= − ∂

∂k

(
µ

k
I∗

+ µ
+ (1− α)

I∗

k∗

)
∂log(I∗)

∂q︸ ︷︷ ︸
>0

.

As I∗ > 0, ∂log(I∗)
∂q

= 1
I∗
∂I∗

∂q
> 0 from Lemma 3. And

(
µ

k
I∗+µ

+ (1− α) I
∗

k∗

)
> 0,
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as I∗ > 0. Thus, the sign of ∂
∂k

∂log(I∗)
∂q

is equal to the sign of− ∂
∂k

(
µ

k
I∗+µ

+ (1− α) I
∗

k∗

)
.

− ∂

∂k

(
µ

k
I∗

+ µ
+ (1− α)

I∗

k∗

)
= − ∂

∂k

(
µ

k
I∗

+ µ
+

(1− α)

1 + (1−δ)k
I∗

)

=

(
µ(

k
I∗

+ µ
)2
)(

∂

∂k

k

I∗

)
+

1− α(
1 + (1−δ)k

I∗

)2 (1− δ)

(
∂

∂k

k

I∗

)

=

( µ(
k
I∗

+ µ
)2
)

+
1− α(

1 + (1−δ)k
I∗

)2 (1− δ)


︸ ︷︷ ︸

>0

(
∂

∂k

k

I∗

)

And we can drive the sign of
(
∂
∂k

k
I∗

)
as follows:

(
∂

∂k

k

I∗

)
=

1

I∗

(
1− k

I∗
∂I∗

∂k

)
=

1

I∗

(
1− k

I∗

(
∂k∗

∂k
− (1− δ)

))
>

1

I∗

(
1− k

I∗

(
k∗

k
− (1− δ)

)) (
∵
∂logk∗

∂logk
< 1, Lemma 2

)
=

1

I∗

(
1− k

I∗

(
I∗

k

))
= 0

Thus,
(
∂
∂k

k
I∗

)
> 0, so − ∂

∂k

(
µ

k
I∗+µ

+ (1− α) I
∗

k∗

)
> 0. Therefore,

(iv)
∂

∂k

(
∂logI∗

∂q

)
> 0 if I∗ > 0.

■

Proposition 5 (Elasticity dampening effect).

41



Given µ > 0, if I∗ > 0, the following statements hold:

(i)
∂

∂µ

(
∂k∗

∂q

)
< 0

(ii)
∂

∂µ

(
∂logk∗

∂q

)
< 0

(iii)
∂

∂µ

(
∂I∗

∂q

)
< 0

(iv)
∂

∂µ

(
∂logI∗

∂q

)≤ 0 if 1
1−δ ≥ µ

> 0 if 1
1−δ < µ

.

Proof.

Taking partial derivative with respect to µ on Equation (5), I obtain

(
µ

k + µI∗
+

1− α

k∗

)
︸ ︷︷ ︸

>0

∂

∂µ

∂I∗

∂q
= − ∂

∂µ

(
µ

k + µI∗
+

1− α

k∗

)
∂I∗

∂q︸︷︷︸
>0

.

From Lemma 3, ∂I
∗

∂q
> 0. And

(
µ

k+µI∗
+ 1−α

k∗

)
> 0, as k+µI∗ = qEz′α(k∗)α−1k >

0. Thus, the sign of ∂
∂µ

∂I∗

∂q
is equal to the sign of − ∂

∂µ

(
µ

k+µI∗
+ 1−α

k∗

)
.

− ∂

∂µ

(
µ

k + µI∗
+

1− α

k∗

)
= −

k + µI∗ − µ
(
I∗ + µ∂I

∗

∂µ

)
(k + µI∗)2

+ (1− α)
−∂k∗

∂µ

(k∗)2


= −

k − µ∂I
∗

∂µ

(k + µI∗)2︸ ︷︷ ︸
>0

+
(1− α)

(k∗)2
∂k∗

∂µ︸ ︷︷ ︸
<0

< 0

From Lemma 4, ∂I
∗

∂µ
= ∂k∗

∂µ
< 0. Thus the first term is positive and the second

term is negative. Thus, the sign of the left-hand side is negative. Therefore,
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(i) and (iii) are proved.

(i)
∂

∂µ

(
∂k∗

∂q

)
< 0

(iii)
∂

∂µ

(
∂I∗

∂q

)
< 0

From the similar logic, the sign of ∂
∂µ

(
∂logk∗

∂q

)
is equivalent to the sign of

− ∂
∂µ

(
µk∗

k+µI∗

)
.

− ∂

∂µ

(
µk∗

k + µI∗

)
= −

(µ∂k
∗

∂µ
+ k∗)(k + µI∗)− µk∗

(
µ∂k

∗

∂µ
+ I∗

)
(k + µI∗)2


= −

(
k∗k + kµ∂k

∗

∂µ
+ µ2 ∂k∗

∂µ
(I∗ − k∗)

(k + µI∗)2

)

= −


k2
(
(1− δ) + I∗

k
+ µ

k
∂I∗

∂µ

)
− µ2

<0 (∵Lemma 4)︷︸︸︷
∂k∗

∂µ
(1− δ)k

(k + µI∗)2


< −

k2
(
I∗

k
+ µ

k
∂I∗

∂µ

)
(k + µI∗)2

 < 0

The last inequality holds because I∗

k
+ µ

k
∂I∗

∂µ
= α(α − 1)qEz′(k∗)α−2 ∂k∗

∂µ
> 0,

which is obtained from taking a partial derivative with respect to µ on the

first-order optimality condition. Therefore, (ii) is proved.

(ii)
∂

∂µ

(
∂logk∗

∂q

)
< 0

From the similar logic, the sign of ∂
∂µ

(
∂logI∗

∂q

)
is equal to the sign of
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− ∂
∂µ

(
µI∗

k+µI∗
+ (1− α) I

∗

k∗

)
.

− ∂

∂µ

(
µI∗

k + µI∗
+ (1− α)

I∗

k∗

)

= −

(µ∂I
∗

∂µ
+ I∗)(k + µI∗)− µI∗

(
µ∂k

∗

∂µ
+ I∗

)
(k + µI∗)2

+
1− α

(k∗)2

(
k∗
∂I∗

∂µ
− I∗

∂k∗

∂µ

)
= −

(
(µ
k
∂I∗

∂µ
+ I∗

k
)k2

(k + µI∗)2
+

1− α

(k∗)2

(
∂k∗

∂µ

)
(1− δ)k

)

= −

(
(α(α− 1)qEz′(k∗)α−2 ∂k∗

∂µ
)k2

(k + µI∗)2
+

1− α

(k∗)2

(
∂k∗

∂µ

)
(1− δ)k

)

= −1− α

(k∗)2

(
−(αqEz′(k∗)α)k2

(k + µI∗)2
+ (1− δ)k

)(
∂k∗

∂µ

)

From the first-order condition αqEz′(k∗)α−1 = 1 + µ
(
I∗

k

)
. Substituting this

into the equation above, I obtain

− ∂

∂µ

(
µI∗

k + µI∗
+ (1− α)

I∗

k∗

)
= −1− α

(k∗)2

(
−
(1 + µ

(
I∗

k

)
)k∗k2

(k + µI∗)2
+ (1− δ)k

)(
∂k∗

∂µ

)
= −1− α

(k∗)2
k

(
−(k + µI∗)k∗

(k + µI∗)2
+ (1− δ)

)(
∂k∗

∂µ

)
=

1− α

(k∗)2
k

(
k∗

k + µI∗
− (1− δ)

)(
∂k∗

∂µ

)
=

1− α

(k∗)2
k(k + µI∗) (k∗ − (1− δ)(k + µI∗))

(
∂k∗

∂µ

)
=

1− α

(k∗)2
k(k + µI∗)I∗ (1− (1− δ)µ)︸ ︷︷ ︸

(∗)

(
∂k∗

∂µ

)
︸ ︷︷ ︸

<0

.

Therefore, depending on the sign of the term (∗) above, the sign of ∂
∂µ

(
∂logI∗

∂q

)
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is determined.

(iv)
∂

∂µ

(
∂logI∗

∂q

)≤ 0 if 1
1−δ ≥ µ

> 0 if 1
1−δ < µ

■
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G.2 A model with convex adjustment cost: Lemmas

and proofs

Lemma 1 (Size-monotonicity in future capital stock).

For ∀k > 0,
∂k∗

∂k
> 0

Proof.

From the inter-temporal optimality condition,

1 + µ

(
k∗

k
− (1− δ)

)
= qEz′α(k∗)α−1.

I take a partial derivative with respect to k:

µ
1

k

∂k∗

∂k
− µ

k∗

k
= qEz′α(α− 1)((1− δ)k + I∗)α−2∂k

∗

∂k
.

By rearranging the terms,

∂k∗

∂k
=

µk
∗

k(
µ 1
k
− qEz′α(α− 1)((1− δ)k + I∗)α−2

) > 0.

The last line is from qEz′α(α− 1)((1− δ)k + I∗)α−2 < 0, as α− 1 < 0. ■

Lemma 2 (Size-elasticity of future capital stock).

For ∀k > 0,
∂log(k∗)

∂log(k)
< 1

Proof.
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By taking log in the both sides of the inter-temporal optimality condition,

log

(
1 + µ

(
k∗

k
− (1− δ)

))
= log(qEz′α(k∗)α−1).

Then, I take a partial derivative with respect to log(k) to obtain

µ ∂
∂logk

(
k∗

k

)
1 + µ

(
k∗

k
− (1− δ)

) = (α− 1)
∂logk∗

∂logk
.

Thus,

µ

∂logk∗

∂logk
k∗

k
− k∗

k

1 + µ
(
k∗

k
− (1− δ)

) = (α− 1)
∂logk∗

∂logk
.

By rearranging terms, I get(
µ

1 + µ
(
k∗

k
− (1− δ)

) k∗
k

− (α− 1)

)
∂logk∗

∂logk
=

µk
∗

k

1 + µ
(
k∗

k
− (1− δ)

) .
By multiplying 1 + µ

(
k∗

k
− (1− δ)

)
, I get

(
µ
k∗

k
− (α− 1)

(
1 + µ

(
k∗

k
− (1− δ)

)))
∂logk∗

∂logk
= µ

k∗

k
.

The, it leads to

∂logk∗

∂logk
=

µk
∗

k

µk
∗

k
− (α− 1)

(
1 + µ

(
k∗

k
− (1− δ)

)) .
From Lemma 1, ∂logk∗

∂logk
> 0 and k∗

k
> 0. Thus the denominator on the right-
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hand side is also positive. Therefore, I have the following equivalence:

∂logk∗

∂logk
< 1 ⇐⇒ µ

k∗

k
< µ

k∗

k
− (α− 1)

(
1 + µ

(
k∗

k
− (1− δ)

))
⇐⇒ 0 < (1− α)

(
1 + µ

(
k∗

k
− (1− δ)

))
⇐⇒ 0 < 1 + µ

(
k∗

k
− (1− δ)

)
⇐⇒ 0 < qEz′α(k∗)α−1.

Because the last inequality is true, I conclude ∂logk∗

∂logk
< 1. ■

Lemma 3 (Investment monotonicity in discount factor ).

∂I∗

∂q
> 0

Proof. From Equation (5), I have

(
µ

k + µI∗
+

1− α

k∗

)
∂I∗

∂q
=

1

q

By rearranging terms, I get

∂I∗

∂q
=

1
q(

µ
k+µI∗

+ 1−α
k∗

) .
Therefore, the following statement holds:

k + µI∗ > 0 =⇒ ∂I∗

∂q
> 0.

Going back to the inter-temporal optimality condition, I multiply k in the
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both sides to have

k + µI∗ = qEz′α(k∗)α−1k > 0.

Therefore, ∂I
∗

∂q
> 0. ■

Lemma 4 (Investment and convex adjustment parameter).

For µ > 0,

∂I∗

∂µ
=
∂k∗

∂µ
< 0 if I∗ > 0.

Proof. From the first-order condition,

1 + µ

(
I∗

k

)
= αqEz′(k∗)α−1

Taking a partial derivative w.r.t µ, I obtain

I∗

k
+
µ

k

∂I∗

∂µ
= α(1− α)qEz′(k∗)α−2∂k

∗

∂µ
.

From I∗ = k∗ − (1− δ)k, ∂I
∗

∂µ
= ∂k∗

∂µ
. Then, by rearranging terms, I get

∂I∗

∂µ
=

I∗

kα(1− α)qEz′(k∗)α−2︸ ︷︷ ︸
<0

−µ
k

 < 0.

■
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G.3 A model with fixed adjustment cost: Proposition

and proofs

Proposition 6 (The effect of the firm size and the price on the adjustment

probability).

For ∀k s.t. ξ∗(k, q) < ξ(q),

∂ψ(k, q)

∂k

∂ψ(k, q)

∂q
< 0 and

∂

∂k

∂

∂q
ψ(k, q) < 0.

Proof.

As ξ∗(k, q) < ξ, ψ(k, q) = ξ∗(k, q)/ξ. By taking the cross-derivative with

respect to q and k on ξ∗(k, q), I obtain

∂2ξ∗(k, q)

∂q∂k
= −αEzz′((1− δ)k)α−1(1− δ) < 0.

Thus, ∂
∂k

∂
∂q
ψ(k, q) < 0.

From Proposition 5, ∂ξ
∗(k,q)
∂k

< 0 for ∀k < k̂, and ∂ξ∗(k,q)
∂k

> 0 for ∀k > k̂.

By taking a partial derivative with respect to q on F , I obtain

∂ξ∗(k, q)

∂q
= Ez′(k∗)α − Ez′((1− δ)k)α.

Thus, ∂ξ
∗(k,q)
∂q

> 0 for ∀k < k∗

(1−δ) = k̂, and ∂ξ∗(k,q)
∂q

< 0 for ∀k > k∗

(1−δ) = k̂.

Therefore, ∂ξ
∗(k,q)
∂k

and ∂ξ∗(k,q)
∂q

always take the opposite sign: ∂ξ∗(k,q)
∂k

∂ξ∗(k,q)
∂q

<

0. And the equality holds when k = k̂. ■
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G.4 A model with fixed adjustment cost: Lemmas and

proofs

Lemma 5 (U-shaped probability of the extensive-margin investment).

Given q > 0, there uniquely exist k̂ and k such that

F (k, q) = ξ, ξ∗(k, q) > ξ for ∀k > k, and

∂F

∂k

∣∣∣
k=k̂

= 0

Proof.

ξ∗(k, q) := −I∗ + qEzz′((1− δ)k + I∗)α − qEzz′((1− δ)k)α

After taking a partial derivative with respect to k, I get the following equa-

tion:20

∂ξ∗(k, q)

∂k
= (1− δ)− αqEzz′((1− δ)k)α−1(1− δ).

Then, at k = k̂ := (αqEzz′)
1

1−α

1−δ , ∂ξ
∗(k,q)
∂k

∣∣∣
k=k̂

= 0. From the first order condition,

we can check (αqEzz′)
1

1−α = k∗. Therefore, k̂ = k∗

1−δ .

Taking another partial derivative with respect to k, I obtain

∂2ξ∗(k, q)

∂k2
= α(1− α)qEzz′((1− δ)k)α−2(1− δ)2 > 0.

Thus, for ∀k < k̂, ∂ξ∗(k,q)
∂k

< 0, and for ∀k > k̂, ∂ξ∗(k,q)
∂k

> 0. Therefore,

ξ∗(k, q) > F (k̂, q), for ∀k > k̂.

20The first order condition is applied after taking the partial derivative.
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Then, I consider a limit case where k → ∞.

lim
k→∞

ξ∗(k, q) = lim
k→∞

−k∗ + (1− δ)k + qEzz′(k∗)α − qEzz′((1− δ)k)α

= lim
k→∞

(
1

α
− 1

)
k∗ + (1− δ)k − qEzz′((1− δ)k)α︸ ︷︷ ︸

→∞

→ ∞.

ξ∗(k, q) is continuous. Thus, if ξ ≥ F (k̂, q), from the intermediate value the-

orem, there exists k such that F (k) = ξ ≥ F (k̂, q). Then, ξ∗(k, q) > ξ for

∀k > k. If ξ < F (k̂, q), then, ξ∗(k, q) > ξ for ∀k > 0. ■

Lemma 6 (The extensive-margin response to interest rate change).

For ∀k ∈ (0, k̂(q))

∂

∂q
ξ∗(k, q) > 0

Proof.

By taking a partial derivative with respect to q on F , I obtain

∂ξ∗(k, q)

∂q
= Ez′(k∗)α − Ez′((1− δ)k)α.

Thus, ∂ξ
∗(k,q)
∂q

> 0 for ∀k < k∗

(1−δ) = k̂. ■

Lemma 7 (Size-monotonicity of the interest-elasticity in a fixed-cost model).

∂

∂k

(
∂I∗

∂q

)
= 0 for ∀k > 0
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If I∗ > 0, then

∂

∂k

(
∂logI∗

∂q

)
> 0 for ∀k > 0

Proof.

From the first order condition,

1 = αqEzz′(k∗)α−1.

This implies that the future capital stock does not depend on the current size

of the firm.

∂k∗

∂k
= 0

From I∗ = k∗ − (1− δ)k, the following equations hold

∂I∗

∂k
= −(1− δ),

∂logI∗

∂k
= −(1− δ)

I∗
for I∗ > 0.

Taking a partial derivative with respect to q,

∂2I∗

∂q∂k
= 0,

∂2logI∗

∂q∂k
=

(1− δ)

I∗2
∂I∗

∂q
for I∗ > 0.

Going back to the first order condition, the following equation holds after
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taking the partial derivative with respect to q.

0 = αEz′(k∗)α−1 + α(α− 1)qEz′(k∗)α−2∂I
∗

∂q

Thus,

∂I∗

∂q
=

αEz′(k∗)α−1

α(1− α)qEz′(k∗)α−2
> 0.

Therefore,

∂2logI∗

∂q∂k
=

(1− δ)

I∗2
∂I∗

∂q
> 0 for I∗ > 0.

■

References

Bachmann, R., R. J. Caballero, and E. M. R. A. Engel (2013, October). Aggre-
gate Implications of Lumpy Investment: New Evidence and a DSGE Model.
American Economic Journal: Macroeconomics 5 (4), 29–67.

Boppart, T., P. Krusell, and K. Mitman (2018, April). Exploiting MIT shocks
in heterogeneous-agent economies: the impulse response as a numerical
derivative. Journal of Economic Dynamics and Control 89, 68–92.

Den Haan, W. J. (2010, January). Assessing the accuracy of the aggregate
law of motion in models with heterogeneous agents. Journal of Economic
Dynamics and Control 34 (1), 79–99.

Gorodnichenko, Y. and M. Weber (2016, January). Are Sticky Prices Costly?
Evidence from the Stock Market. American Economic Review 106 (1), 165–
199.

Gurkaynak, R. S., B. Sack, and E. T. Swanson (2005). Do Actions Speak
Louder Than Words? The Response of Asset Prices to Monetary Policy
Actions and Statements. International Journal of Central Banking 1 (1),
39.

54



Jeenas, P. (2018). Monetary Policy Shocks, Financial Structure, and Firm
Activity: A Panel Approach. SSRN Electronic Journal .

Khan, A. and J. K. Thomas (2008, March). Idiosyncratic Shocks and the Role
of Nonconvexities in Plant and Aggregate Investment Dynamics. Economet-
rica 76 (2), 395–436.

Koby, Y. and C. K. Wolf (2020). Aggregation in Heterogeneous-Firm Models:
Theory and Measurement. Working Paper , 66.

Krusell, P. and A. Smith, Jr. (1998, October). Income and Wealth Heterogene-
ity in the Macroeconomy. Journal of Political Economy 106 (5), 867–896.

Lee, H. (2023). Solving DSGE Models Without a Law of Motion: An
Ergodicity-Based Method and an Application. Working paper , 33.

Ottonello, P. and T. Winberry (2020). Financial Heterogeneity and the In-
vestment Channel of Monetary Policy. Econometrica 88 (6), 2473–2502.

Winberry, T. (2021, January). Lumpy Investment, Business Cycles, and Stim-
ulus Policy. American Economic Review 111 (1), 364–396.

Young, E. R. (2010, January). Solving the incomplete markets model with
aggregate uncertainty using the Krusell–Smith algorithm and non-stochastic
simulations. Journal of Economic Dynamics and Control 34 (1), 36–41.

Zwick, E. and J. Mahon (2017, January). Tax Policy and Heterogeneous
Investment Behavior. American Economic Review 107 (1), 217–248.

55


	Firm-level interest-elasticity in the existing model and the data 
	A two-period model with a convex adjustment cost
	A two-period model with a fixed adjustment cost
	Comparison of the semi-elasticities across models 
	Firm-level interest-elasticities of investments in the data

	Monetary policy shock
	Investment elasticities to the monetary policy shocks: Full tables
	Semi-elasticity: The full table

	State-dependent sensitivity of the aggregate investment growth: Full table
	Solution method: The repeated transition method
	Additional tables and figures
	Conditional heteroskedasticity: Regression result
	Fixed parameters
	Business cycle statistics

	Recursive competitive equilibrium
	A theory of the interest-elasticity and the firm size: Proofs
	A model with convex adjustment cost : Propositions and proofs
	A model with convex adjustment cost: Lemmas and proofs
	A model with fixed adjustment cost: Proposition and proofs 
	A model with fixed adjustment cost: Lemmas and proofs


