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Abstract

This paper studies an economy’s endogenous fragility to a negative TFP

shock shaped by large firms’ synchronized lumpy investments. I develop a

heterogeneous-firm real business cycle model in which the interest elasticities

of large and small firms’ investments are matched with the empirical estimates.

In the model, the timings of large firms’ lumpy investments are persistently

synchronized due to the low sensitivity to the general equilibrium effect, leading

to surges of lumpy investments. After the surge, TFP-induced recessions are

especially severe, and the semi-elasticity of the aggregate investment drops

significantly, consistent with the data.
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1 Introduction

This paper studies an economy’s endogenous fragility to a negative TFP shock shaped

by large firms’ investment dynamics. Large firms’ investments are lumpy, large in its

scale, and inelastic to the interest rate change. These distinctive natures generate an

endogenous state dependence in the economy through their synchronized large-scale

investments, which has been only scantly studied in the literature. Using a calibrated

heterogeneous-firm business cycle model, I substantiate that this channel leads to a

significant variation in the aggregate allocations’ sensitivity to the aggregate TFP

shocks.

The contribution of this paper can be summarized in three folds. The first is iden-

tifying and quantifying the novel large-firm-driven aggregate-level state dependence.

Based on the firm-level and macro-level data, I show that the aggregate investment

sensitivity to a TFP shock significantly increases in the portion of large firms that

have recently completed large-scale investments. I deduce that the low interest elas-

ticity of large firms is key to capturing this observed state dependence, using the

comparative-static analysis based on the general equilibrium model. According to

the quantitative analysis, around 23% of the investment rate drops during the recent

recessions are accounted for by the fluctuations in the large firms’ synchronized lumpy

investments.1 Moreover, a one-standard-deviation increase in the past synchroniza-

tion leads to a decline in the aggregate investment semi-elasticity to the interest rate

change by around 3.4% compared to the steady-state level.

Secondly, this paper develops a fragility index that indicates the aggregate invest-

ment and output responsiveness to a negative TFP shock. The index is based on

the portion of large firms that have recently completed lumpy investments.2 There-

fore, 1) it is constructed from the data on the large firms, 2) determined by the past

observations, and 3) has a predictive power on the contemporaneous investment re-

1The sample periods exclude the pandemic period.
2Thus, this index measures the degree of the recent synchronization.
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sponsiveness. These three features serve a great practical value, as most of the large

firms’ data is public, so their recent investment activities are easily traceable.3

Lastly, this paper develops a heterogeneous firm model that can correctly capture

the cross-section of the interest elasticity. The existing models in the literature have

incorporated fixed and convex adjustment costs to capture the empirically supported

firm-level investment dynamics. However, the calibrated version of these models coun-

terfactually flips the cross-sectional ranking of the interest-elasticities of investment

between large and small firms: the large becomes more interest-elastic than the small.

This is because the cost of the extensive margin investment is too cheap for large firms

in those models, allowing them to respond more sensitively to the interest rate changes

than the small firms. I fix this problem by introducing and calibrating a parameter

that governs how the size affects the inaction cutoffs through the size-dependent fixed

adjustment cost. I provide a micro-founded structural implication for this parameter,

which is a degree of interdependence across the establishments within a firm. The

calibrated baseline model correctly captures the inelastic large firms and elastic small

firms, which results in a significantly greater nonlinearity and state dependence in

the aggregate investment dynamics compared to the existing models.

Over the business cycle, the large firms’ investment timings are persistently syn-

chronized in the baseline model, as observed in the data. This is because firms tend

to pause lumpy investment projects synchronously when a negative aggregate TFP

shock hits, as future business prospects are not promising due to the persistence of

the shock.4 Since they stop together, their implementation timings tend to be syn-

chronized in the following periods. This is similar to pedestrians stopping altogether

at the crossing when the red light turns on and walking together synchronized when

3This is due to the fact that large firms are mostly listed, which makes them subject to financial
disclosure regulations mandated by the U.S. Securities and Exchange Commission (SEC). Therefore,
the fragility index does not require to track the entire set of firms.

4Similar synchronization can happen for a positive aggregate TFP shock. However, the positive
shock is not as effective as the negative shock in terms of synchronization because the accelerating
implementation of a project entails paying a fixed adjustment cost while stopping is costless.
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the light turns green. However, if a general equilibrium’s smoothing force is strong

enough, as in Khan and Thomas (2003, 2008), such synchronization can be resolved,

encouraging firms to pursue relatively dispersed investment timings. The baseline

model’s low-interest elasticity of large firms makes the interest rate’s smoothing force

less effective, preserving surges of large firms’ lumpy investments even in general

equilibrium.

When a negative aggregate shock hits, some of the large firms still undergo planned

lumpy investments, as their marginal benefit of investment exceeds the cost despite

the bad economic prospects. These firms’ investments buffer the exogenous negative

impact of the TFP shock on the economy through the added capital.5 However, after

surges of large firms’ lumpy investments, relatively fewer large firms are willing to

undertake such counter-cyclical lumpy investments. In other words, relatively more

large firms are in the early stages of their Ss band. Therefore, if a negative aggregate

TFP shock hits after the surges, the response of the aggregate investment is sharper,

leading to a deeper recession. This effect is the main source of the state-dependent

responsiveness of the aggregate investment.

For the computation of the model, I use the sequence-space-based nonlinear global

solution method concurrently developed in Lee (2024), which dispenses with the func-

tional specification of the law of motion for the endogenous aggregate state. Due to

the surges of lumpy investments that are only partially smoothed out by the general

equilibrium effect, the true law of motion in the aggregate states is nonlinear. This

makes it difficult to specify its functional form to apply the state-space-based method

(Krusell and Smith, 1997, 1998). However, the method I use in this paper is free

from this concern and quickly computes the global nonlinear solution path without

an extra loop for the period-by-period non-trivial market clearing condition. Using

the method, the endogenous state dependence in the aggregate investment fluctuation

is accurately quantified.

5Some of the small firms also make counter-cyclical lumpy investments, but they are quantita-
tively less meaningful due to their small size.
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In the model, the aggregate investment’s interest elasticity depends on the level of

the fragility index over the business cycle. This result implies that the monetary pol-

icy’s effectiveness can be low after a surge of large firms’ lumpy investments.6 Also, it

provides a micro-founded explanation of why monetary policy has not been effective

during the recessions, especially through the business investment channel (Tenreyro

and Thwaites, 2016).

Related literature This paper is related to the literature that studies how firm-

level investments shape the aggregate investment over the business cycle. The litera-

ture investigated under which condition the firm-level nonlinear investment dynamics

are relevant to the aggregate investment dynamics (Caplin and Spulber, 1987; Ca-

ballero and Engel, 1993; Elsby and Michaels, 2019) and its macro-economic implica-

tions over the business cycle (Caballero and Engel, 1991, 1999; Cooper et al., 1999).

Building upon these findings, the recent strands of the literature has studied the rich

heterogeneous-firm environments, of which the complicated endogenous distributional

dynamics are summarized by the sufficient statistics (Baley and Blanco, 2021) based

on the novel analytical framework (Alvarez and Lippi, 2022).

My paper’s fragility index builds upon the sufficient statistic approach by Baley

and Blanco (2021). Similar to the sufficient statistics, the fragility index is constructed

from the cross-sectional firm-level data and captures how large a portion of firms are

close to the re-adjustment point in the Ss cycle. However, the fragility index is based

on the distribution of large firms instead of the entire distribution. Also, my paper

analyzes the endogenous state dependence predicted by the fragility index using a

global nonlinear solution method, away from the stationary equilibrium.

An unsettled debate yet in the literature is the role of general equilibrium effect

in neutralizing the firm-level lumpy adjustment patterns. Using a canonical model

with a fixed adjustment cost, Thomas (2002) has shown that the general equilibrium

6The policy implication is limited to a positive implication, as the model does not include a
monetary policy block.
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effect almost fully neutralizes the firm-level lumpiness once aggregated. Khan and

Thomas (2003, 2008) have shown that the inclusion of the firm-level heterogeneity

does not mitigate the strong neutralizing force of the general equilibrium. According

to House (2014), this is due to the near-infinite interest elasticity of the firm-level

capital adjustment in the extensive margin in the models with the fixed adjustment

cost.

To this point, Gourio and Kashyap (2007) shows that the close-to-perfect neu-

tralization is not a generic nature of the general equilibrium, and it depends on the

parametric setup in the model such as the assumption on the distribution of the fixed

adjustment cost. Bachmann et al. (2013) shows that when the maintenance invest-

ment demand is considered, the general equilibrium effect cannot perfectly smoothen

the lumpiness of the aggregate investments, leading to the state-dependent responsive-

ness. Their firm-level maintenance demand essentially lowers the interest elasticity

of investment, which weakens the general equilibrium effect. Similarly, in the models

of Winberry (2021) and Koby and Wolf (2020), the firm-level investments feature re-

alistic interest elasticity of investment on average, due to the presence of the convex

adjustment cost, leading to the nonlinear aggregate investment dynamics.

Related to this literature, my paper shows that the models with plain-vanilla fixed

and convex adjustment costs flip the cross-sectional ranking of the elasticities between

the small and large firms. Therefore, the nonlinearity in the aggregate dynamics

studied in the existing models has been counterfactually driven by the non-smoothed

small firms’ investments rather than the large firms’ investments. I show that once the

cross-sectional ranking is corrected, the negative skewness and the state dependence

in aggregate investments become substantially stronger due to the unsmoothed large

firms’ lumpy investments.7

Lastly, this paper is related to the literature studying the state-dependent effec-

7This nonlinear effect is significantly large even if the compared models share the same average
interest elasticity at the firm level as the baseline at the steady state. That is, in the nonlinear
model, the cross-section of the elasticity matters on top of the average elasticity.
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tiveness of monetary policy. The most closely related paper is Tenreyro and Thwaites

(2016), which shows that business investment and durables expenditure are less re-

sponsive to monetary policies during recessions. Related to this, Gnewuch and Zhang

(Gnewuch and Zhang) shows that when inelastic old firms take a greater portion of

the market, such as in downturns, the effectiveness of monetary policy declines. My

paper shows that the interest-elasticity of aggregate investment significantly decreases

in the fragility index. This provides a micro-founded explanation of why monetary

policy has not been effective during the past recessions that were preceded by the

surges of large firms’ lumpy investments.

Roadmap Section 2 shows motivating facts about surges of large firms’ lumpy

investments that proceeded the recessions. Section 3 develops a heterogeneous-firm

business cycle model where the cross-section of the interest-elasticities is matched

with the empirical estimates. Section 4 analyzes the macroeconomic implications of

the calibrated model. Section 5 concludes.

2 Motivating facts

2.1 Data and the definitions

In this section, I empirically analyze the cyclical pattern of large firms’ lumpy in-

vestments. I use U.S. Compustat data for the firm-level empirical analysis. While

Compustat data covers only public firms, its coverage is relatively less of an issue

in this analysis because the focus is on top large firms, most of which are listed.

Throughout the empirical analysis, large firms are defined as firms that hold capital

stocks greater than the 40th percentile of the capital distribution in each industry of

the two-digit NAICS code in the Compustat data. The choice of the 40th percentile

is for consistency with the definition in Zwick and Mahon (2017), which estimated the
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interest-elasticities of firm-level investments.8 The sample period covers from 1980 to

2016. Firms with negative assets and zero employment are excluded from the sam-

ple. All the firm-level variables except capital stock and investment are deflated by

the GDP deflator. Investment is deflated by non-residential fixed investment deflator

available from National Income and Product Accounts data (NIPA Table 1.1.9, line

9). The firm-level real capital stock is obtained by applying the perpetual inventory

method to net real investment. The industry is categorized by the first two-digit

NAICS code.9

2.2 Surges of large firms’ lumpy investments and recessions

In the following analysis, I empirically analyze the relationship between large firms’

lumpy investments and the timing of recessions. I define an investment spike as a

firm-specific event where a firm makes a large-scale investment greater than 20% of the

firm’s existing capital stock.10 I refer to this investment spike as a lumpy investment

or capital adjustment in the extensive margin interchangeably. Then, I define spike

ratio as follows:

Spike ratioj,t :=

∑
i∈j

I{iit/kit > 0.2}

# of j-type firms at t
, j ∈ {small, large} (1)

8In Zwick and Mahon (2017), large and small firms are defined by the cutoffs of (15.4M, 48.8M)
in terms of sales in the years 1998 through 2000 and 2005 through 2007 (Table B.1, panel (d)). I
compute the corresponding capital size cutoffs in Compustat.

9If only SIC code is available for a firm, I imputed the NAICS code following online appendix
D.2 of Autor et al. (2020). If both NAICS and SIC are missing, I filled in the next available industry
code for the firm.

1020% cutoff is from the literature that studies the role of non-convex adjustment cost in the firm
dynamics (Cooper and Haltiwanger, 2006; Gourio and Kashyap, 2007; Khan and Thomas, 2003,
2008). If a firm’s acquired capital stock is greater than 5% of existing capital stock in a certain year,
I rule out the observation from the sample due to possible noise in the reported items in the balance
sheet during the acquisition year.
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The numerator counts all the incidences of investment spikes from firm type j ∈

{small, large} at time t, and it is normalized by the total number of j-type firms.

Figure 1: Three surges of large firms’ lumpy investments before recessions
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Notes: The firm-level large-scale investment is defined as an investment greater than 20% of the
existing capital stock. The solid line plots the time series of the fraction of large firms making
large-scale investments. The grey areas indicate the NBER recession periods.

Figure 1 plots the time series of the spike ratio of large firms. On average, 9.2%

of large firms adjust their existing capital stocks in the extensive margin in a year.

As can be seen from Figure 1, since 1980, there have been only four periods (1980,

1996, 1998, and 2007) where the fraction of large firms making spiky investments

surged beyond one-standard deviation. Three out of the four events were followed by

recessions within two years.

Conversely, there were four recessions in the U.S. over the same period, and three

out of four recessions were preceded by the surge of large firms’ lumpy investments.

The exception was the recession in 1990, and it was the mildest recession among the

four recessions.

In the following analysis, I show aggregate investment rate is conditionally het-

eroskedastic on the average lagged spike ratio of large firms. That is, the residualized

volatility of aggregate investment rate is high if a great portion of large firms have

recently made lumpy investments.

For this analysis, I use aggregate data on non-residential investment (NIPA Table

1.1.5, line 9) and aggregate capital (Fixed Asset Accounts Table 1.1, line 4) from

BEA. The thick line in Figure 2 plots the estimates of the log standard deviation of
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Figure 2: Conditional heteroskedasticity of aggregate investment
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residuals from the autoregression of aggregate investment rates as a function of the

recent average of large firms’ spike ratio.11 The recent average is based on the average

spike ratio of the past two years. As can be seen from this figure, aggregate invest-

ment rates are heteroskedastic conditional on the lagged average spike ratio. Table

E.9 reports the regression coefficients for the fitted line. According to the regression

result, a one-standard-deviation increase (1.47%) in the large firms’ past spike ratio

is associated with a one-standard-deviation increase (0.50%) in the aggregate invest-

ment’s residualized volatility. Consistent with the patterns in Figure 1, the three

recession years of interest are located at the top-right corner in Figure 2.

2.3 Lumpiness of large and small firms’ investments

This section compares the lumpy investment patterns between large and small

firms. Table 1 reports the inaction-related moments in the first part and the moments

based on the lumpy investments in the second part. The time to lumpy investment

11This empirical analysis is motivated from the conditional heteroskedasticity analysis in Figure
1 of Bachmann et al. (2013). Differently from theirs, the focus is on the large firms’ recent lumpy
investments.
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is defined as the time distance between two neighboring lumpy investments.

Table 1: Comparison of lumpy investment patterns between large and small firms

Large Small

Inaction moments (all in yrs.)

Unconditional mean of time to lumpy investment 6.892 6.460
(0.122) (0.157)

Mean of average firm-level time to lumpy investment 7.687 6.933
(0.159) (0.186)

Lumpy investment moments (all in percentage)

Dollar portion of lumpy investments out of total investments 21.050 28.360
(1.080) (1.340)

Average spike ratio 9.192 16.813
(0.280) (0.568)

Notes: The statistics are from the US Compustat firm-level data.

The first part of the table shows that large firms’ Ss cycle is longer than that

of small firms, as their unconditional and cross-sectional means of firm-level time to

lumpy investments show. The second part of the table shows that small firms’ lumpy

investments account for a greater portion of total investments than large firms. How-

ever, large firms’ lumpy investments still account for 21% of the entire investments.

The spike ratio defined in Equation (1) is smaller for large firms than small firms,

which is consistent with the inaction moments that indicate large firms’ lumpy in-

vestments feature a lengthier Ss cycle. Therefore, large firms’ lumpy investments are

less frequent but substantially large in its size.

If a lumpy investment is made only at an establishment level, large firms that own

many establishments should display a smoothed investment pattern. However, the

statistics above show that large firms’ investments are also lumpy, and their Ss cycle

tends to be lengthier than small firms.
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3 Model

I develop and analyze a heterogeneous-firm real business cycle model in which the

cross-section of the interest elasticities of firm-level investment matches the empirical

estimates. In the model, time is discrete and lasts forever. There is a continuum of

measure one of firms that own capital, produce business outputs, and make invest-

ments. The business output can be reinvested as capital after a firm pays adjustment

costs.

3.1 Technology

A firm produces a unit of goods using capital and labor inputs, which can be converted

to a unit of capital after paying an adjustment cost. The production technology is a

Cobb-Douglas function with decreasing returns to scale:

zitAtf(kit, lit) = zitAtk
α
itl

γ
it, α+ γ < 1 (2)

where kit is firm i’s capital stock at the beginning of period t; lit is labor input; zit is

idiosyncratic productivity; At is aggregate TFP. Idiosyncratic productivity, zit, and

aggregate TFP, At, follow the stochastic processes as specified below:

ln(zit+1) = ρzln(zit) + ϵz,t+1, ϵz,t+1 ∼iid N(0, σz) (3)

ln(At+1) = ρAln(At) + ϵA,t+1, ϵA,t+1 ∼iid N(0, σA) (4)

where ρs and σs are persistence and standard deviation of i.i.d innovation in each

process s ∈ {z, A}, respectively. Both stochastic processes are discretized using the

Tauchen method in computation.
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3.1.1 Investment and adjustment

I assume a firm-level large-scale investment could be made only after paying a total

adjustment cost, Ψit, which varies over firm-level allocations. The total adjustment

cost is a function of capital stock, kit, investment size Iit, and a fixed cost shock

ξit ∼iid Unif [0, ξ] as in Winberry (2021). This total adjustment cost is composed

of two additively separable parts: a convex adjustment cost and a fixed adjustment

cost. The convex adjustment cost is a function of the current capital stock, kit, and

the investment Iit as assumed in the literature. The fixed adjustment cost, Fit, is

a function of the current capital stock kit and a fixed cost shock ξit ∼iid Unif [0, ξ].

The fixed cost does not incur if a firm adjusts capital within a moderate range (Iit ∈

Ω(kit) := [−νkit, νkit]). A firm needs to pay a fixed cost for investment beyond this

range. The fixed cost is assumed to be overhead labor cost, so it varies over the

business cycle due to wage fluctuations.12

To summarize, I assume the following total adjustment cost structures:

Ψit = Ψ(kit, Iit, ξit;wt) (5)

= µ

(
Iit
kit

)2

kit + F (kit, ξit)wt (6)

F (kit, ξit) =

ξitk
ζ if Iit ̸∈ Ω(kit) = [−νkit, νkit]

0 if Iit ∈ Ω(kit) = [−νkit, νkit]

(7)

This model’s key difference from the existing literature is the size-dependent fixed

cost parametrized by the extensive-margin elasticity dispersion parameter, ζ. As ζ

increases, the extensive-margin elasticity gap between small and large firms widens.

In Section 4, I quantitatively investigate how ζ affects the cross-sectional distribution

of interest-elasticity and the macroeconomic allocations.

12This setup is from Khan and Thomas (2008) and Winberry (2021).
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3.1.2 Size-dependent fixed cost: A theoretical explanation

This section provides a theoretical ground for the size-dependent fixed cost. The

presence of a fixed cost for the firm-level investment has been widely accepted in the

literature. However, relatively little research has been conducted on whether the fixed

cost occurs at the establishment or firm levels. Depending on the model specification

and the granularity of the data, each paper flexibly assumes a fixed cost.

My paper incorporates the fixed cost at the firm level, but its functional form

is grounded on the establishment-level fixed cost. I argue that if a firm decides

to make a large-scale investment by expanding establishments, fixed cost occurs at

each existing establishment due to interdependence across the establishments. For

example, if a new establishment is constructed, the production lines in the existing

establishments have to be adjusted to coordinate with the new one, and managers

have to be reallocated across the different production units. Therefore, intuitively,

firm-level fixed cost increases in the number of establishments and the degree of

interdependence across the establishments.

To sharpen the theoretical points, let’s assume a firm has n establishments and

plans to expand a new factory. Then, if establishments are coordinated pairwise, and

if the fixed cost of each coordinated pair is ξ, the total firm-level fixed cost F2 is as

follows:13

F2 =

n

2

× ξ =
n(n− 1)

2
ξ, (8)

which quadratically increases in the number of establishments. This is when each

establishment is interdependent pairwise. Then, if an establishment’s operation is

dependent on ζ − 1 number of other establishments on average, the firm-level fixed

13The subscript 2 indicates the degree of the interdependence, which is 2 (pairwise) here.
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cost becomes as follows:

Fζ =

n

ζ

× ξ =
n(n− 1)(n− 2) . . . (n− ζ + 1)

ζ!
ξ (9)

The firm-level fixed cost Fζ exponentially increases in the number of establishments

to the power of ζ. For a higher interdependence across the establishments, the fixed

cost increases faster. This simple theoretical result shows that the number of the basic

operation units (e.g., establishment, department or team) convexly raises the internal

complexity in term of the interactions under the interdependence. Then, it increases

the firm-level fixed cost when the firm makes a large-scale capital adjustment.

I proxy the number of establishments (or basic production units) by the total

capital stock kit based on the empirical evidence from Cao et al. (2019). Using the

US administrative data, they point out that the firm growth is dominantly driven by

the expansion in the number of establishments.

3.2 Household

A stand-in household is considered. The household consumes, supplies labor, and

saves in a complete market. In the beginning of a period, the household is given with

an equity portfolio a, the information on the contemporaneous distribution of firms

Φ, and the aggregate TFP level A. The household problem in the recursive form is

as follows:

V (a;S) = max
c,a′,lH

log(c)− ηlH + βEV (a′;S ′) (10)

s.t. c+

∫
ΓA,A′q(S, S ′)a(S ′)dS ′ = w(S)lH + a(S) (11)

GΦ(S) = Φ′, P(A′|A) = ΓA,A′ , S = {Φ,A} (12)
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where V is the value function of the household; ΓA,A′ is the state transition probability;

c is consumption; a′ is a state-contingent future saving portfolio; lH is labor supply;

w is wage, and r is real interest rate.

From the household’s first-order condition and the envelope condition, I obtain

the following characterization of the stochastic discount factor q(S, S ′):

q(S, S ′) = β
C(S)

C(S ′)
(13)

I define p(S) := 1
C(S)

. In the recursive formulation of a firms’ problem in the next

section, I use p(S) to normalize the firm’s value function, following Khan and Thomas

(2008).

3.3 A firm’s problem: Recursive formulation

In this section, I formulate a firm’s problem in the recursive form. A firm is given

with capital k, an idiosyncratic productivity z, in the beginning of a period. Also,

they are given with the knowledge on the contemporaneous distribution of firms Φ

and the aggregate TFP level A. For each period, firm determines investment level I

and labor demand nd. A firm’s problem is formulated in the following recursive form:

J(k, z;S) = π(k, z;S) + (1− δ)k (14)

+

∫ ξ

0

max {R∗(k, z;S)− F (k, ξ)w(S), Rc(k, z;S)} dGξ(ξ) (15)

R∗(k, z;S) = max
k′≥0

− k′ − c(k, k′) + Eq(S, S ′)J(k′, z′;S ′) (16)

Rc(k, z;S) = max
kc∈Ω(k)

− kc − c(k, kc) + Eq(S, S ′)J(kc, z′;S ′) (17)
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The following lines explain the details of each component in the value function.

(Operating profit) π(z, k;S) := max
nd

zAkαnγ
d − w(S)nd (nd: labor demand)

(18)

(Convex adjustment cost) c(k, k′) :=
(
µI/2

)
((k′ − (1− δ)k)/k)

2
k (19)

(Size-dependent fixed cost) F (k, ξ) := ξkζ (20)

(Constrained investment) kc ∈ Ω(k) := [−kν, kν] (ν < δ) (21)

(Idiosyncratic productivity) z′ = Gz(z) (AR(1) process) (22)

(Stochastic discount factor) q(S, S ′) = β (C(S)/C(S ′)) (23)

(Aggregate states) S = {A,Φ} (24)

(Aggregate law of motion) Φ′ := H(S), A′ = GA(A) (AR(1) process), (25)

Then, I multiply p(S) = 1/C(S) on the both sides of line (15) to obtain

p(S)J(k, z;S) = p(S)(π(k, z;S) + (1− δ)k) (26)

+

∫ ξ

0

max {p(S)R∗(k, z;S)− p(S)w(S)F (k, ξ), p(S)Rc(k, z;S)} dGξ(ξ)

(27)

I define the normalized value functions as follows:

J̃(k, z;S) := p(S)J(k, z;S) (28)

R̃∗(k, z;S) := p(S)R∗(k, z;S) (29)

R̃c(k, z;S) := p(S)Rc(k, z;S) (30)

It is necessary to check whether the recursive formulation naturally follows for the
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normalized value functions. Using p(S)q(S, S ′) = βp(S ′),

R̃∗ = max
k′≥0

(−k′ − c(k, k′))p(S) + Ep(S)q(S, S ′)J(k′, z′;S ′) (31)

= max
k′≥0

(−k′ − c(k, k′))p(S) + Eβp(S ′)J(k′, z′;S ′) (32)

= max
k′≥0

(−k′ − c(k, k′))p(S) + βEJ̃(k′, z′;S ′) (33)

Similarly,

R̃c = max
kc∈Ω(k)

(−kc − c(k, kc))p(S) + βEJ̃(kc, z′;S ′). (34)

Therefore, the recursive form is preserved for the normalized value functions. As in

Khan and Thomas (2008), the recursive form based on the normalized value function

eases computation of the dynamic stochastic general equilibrium because the price,

p, depends only on the current aggregate state variable, S.

A firm makes a large scale investment only if R∗(k, z;S) > Rc(k, z; s). Therefore, a

firm-level extensive-margin investment decision can be characterized by the threshold

rule, gξ∗ , as follows:

gξ∗(k, z;S) = min

{
R̃∗(k, z;S)− R̃c(k, z;S)

w(S)p(S)kζ
, ξ

}
, (35)

where firms invest in the extensive margin only when ξ ∈ [0, gξ∗(k, z;S)). This thresh-

old rule is distinguished from the ones in the literature in that it includes the capital

stock in the denominator. This lowers the threshold level more for large firms than

for small firms, helping capture the empirically supported cross-section of interest

elasticities. I quantitatively show this in Section 4.

I denote gk∗ as the optimal future capital stock conditional on the extensive-

margin investment, gkc as the optimal future capital stock conditional on the small-

scale investment, and gk as the unconditional optimal investment. Then, the capital
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adjustment policy can be summarized as follows:

gk(k, z;S) =

gk∗(k, z;S) if ξ < gξ∗(k, z;S)

gkc(k, z;S) if ξ ≥ gξ∗(k, z;S).

(36)

The standard recursive competitive equilibrium is considered for the analysis of the

global equilibrium dynamics. The definition is available at Appendix F.

4 Quantitative analysis

This section quantitatively analyzes the macroeconomic implications of the synchro-

nized lumpy investments of large firms. First, I discipline the baseline model by

calibrating the parameters to fit the data moments. Especially, the different interest

elasticities between small and large firms are the key moments to be fitted, which are

hardly captured in alternative models. Second, I analyze the synchronization of large

firms’ lumpy investments using the impulse responses and the global equilibrium dy-

namics. Lastly, I quantitatively analyze the aggregate-level state dependence driven

by the synchronized lumpy investments of large firms.

4.1 Calibration

In this section, I elaborate on how the model is fitted to the data and compare the

fitness with alternative models. Table 2 reports the target and untargeted moments

from the data and the simulated moments in the model. Table 3 reports the calibrated

parameters given the fixed parameters reported in Table E10. In the simulation step,

I use the non-stochastic method in Young (2010).

The target semi-elasticity of average investment is from Zwick and Mahon (2017).

The cross-sectional semi-elasticity ratio is also from the same paper, which documents
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Table 2: Fitted Moments

Moments Data Model Reference

Targeted moments
Semi-elasticity of investment (%) 7.20 6.60 Zwick and Mahon (2017)
Cross-sectional semi-elasticity ratio (%) 1.95 1.81 Zwick and Mahon (2017)
Cross-sectional average of iit/kit ratio 0.10 0.10 Zwick and Mahon (2017)
Cross-sectional dispersion of iit/kit (s.d.) 0.16 0.16 Zwick and Mahon (2017)
Cross-sectional average spike ratio 0.14 0.14 Zwick and Mahon (2017)
Positive investment rate 0.86 0.86 Winberry (2021)
Time-series volatility of log(Yt) 0.06 0.07 NIPA data (Annual)

Untargeted moments (all in yrs.)
Average inaction periods 6.38 7.88 Compustat data
Dispersion of inaction periods 4.87 5.65 Compustat data
Average of lag diff. of inaction periods 0.27 0.69 Compustat data
Dispersion of lag diff. of inaction periods 6.47 8.56 Compustat data

Notes: The data moments are from the sources specified in the reference column. The same sample
restriction as in the empirical analysis applies to Compustat data. I use linearly detrended real GDP
from the National Income and Product Accounts at the annual frequency for the aggregate output
volatility.

that small firms’ investments are around twice elastic as large firms towards the

interest rate change. The cross-sectional average and dispersion of the investment-

to-capital ratio and the average spike ratio are targeted to match the levels in Zwick

and Mahon (2017) as in Winberry (2021) and Koby and Wolf (2020). Consistent

with the literature, I define the spike ratio as the fraction of firms investing greater

than 20% of the existing capital stock. The target of positive investment rate is from

Winberry (2021). The positive investment rate is defined as the fraction of firms with

an investment that is greater than 1% but smaller than 20% of existing capital stock.

Only a negligible fraction of firms make a negative investment in both data and the

model. To discipline the aggregate TFP-driven fluctuations in the model, I target

the output volatility calculated from annual National Income and Product Accounts

(NIPA) data.

In the model, variations in the fixed cost parameter and convex adjustment cost

parameter lead to a sharply divergent effect on the dispersion of the investment rate
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Table 3: Calibrated Parameters

Parameters Description Value

Internally calibrated parameters
ζ Fixed cost curvature 3.500

ξ Fixed cost upperbound 0.440
µI Capital adjustment cost 0.760
ν Small investment range 0.041
σ Standard deviation of idiosyncratic TFP 0.130
σA Standard deviation of aggregate TFP shock 0.025

Externally estimated parameters
ρ Persistence of idiosyncratic TFP 0.750

Notes: Parameters in the upper part of the table are calibrated to match the moments in
Table 2. The persistence of idiosyncratic TFP is directly computed from fitting the esti-
mated firm-level TFP (Compustat) into AR(1) process. The firm-level TFP is estimated
following Ackerberg et al. (2015) using US Compustat data.

(investment-to-capital ratio), while both lowers the average investment rate. The

dispersion of the investment rate increases in the fixed cost parameter, as the dif-

ference in the investment rate between extensive-margin adjusters and non-adjusters

increases.14 On the other hand, a higher convex adjustment cost mutes down the

investment rate for all firms, leading to a lower dispersion in the investment rate.

These two divergent variations, together with the average investment rate, identify

the levels of the fixed and convex adjustment cost parameters.

The fixed cost curvature parameter ζ is identified from the cross-sectional semi-

elasticity ratio between small and large firms. As ζ increases beyond unity, the large

firms’ interest elasticity decreases due to the lengthened (S, s) band.15 The calibrated

level of ζ is 3.5, which I interpret as 3.5 establishments are involved per production

line on average.16

14If a fixed cost is too high, the fraction of adjusters become too small to have meaningful contri-
bution to the investment rate dispersion.

15A contemporaneous work, Gnewuch and Zhang (Gnewuch and Zhang) studies how monetary
policy shock affects the distribution of investment rates, and they document that young firms are
more sensitive to the shock than old firms. Regarding this elasticity difference, they conclude that
the extensive-margin sensitivity plays a crucial role, consistent with the results in my paper.

16The related explanation is available in Section 3.1.2.
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Moreover, the calibrated model matches untargeted moments, which are relevant

indicators of firm dynamics. Average inaction is around 6.38 years in the data, and

the one in the model is 7.88 years. The standard deviation of the inaction periods is

4.87 years in the data, and the model counterpart is 5.65 years.

As can be seen from Table 2, the baseline model can correctly capture the cross-

sectional elasticity ratio between small and large firms. Therefore, the baseline model

provides an appropriate framework for analyzing the role of large firms’ investment in

the dynamic stochastic general equilibrium. This is one of this paper’s contributions

to the literature, as the interest elasticity cross-section is not well-captured in the

existing model framework.17

Figure 3: Semi-elasticities of investments across different models
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(b) Fixed only
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(c) Convex + Fixed

Notes: The figure plots the deviation of investment from the steady-state level when the interest
rate changes for each different model. The vertical axis is the interest rate in per cent, and the
horizontal axis is the percentage deviation from the steady-state investment. The horizontal dotted
line indicates the equilibrium interest rate.

Figure 3 visualizes the large and small firms’ interest elasticities for the baseline

model (panel (a)), for a model with fixed cost only (panel (b)), and for a model with

convex and fixed cost (panel (c)).18 Throughout this paper, all the alternative models

to the baseline are calibrated to sharply match the target moments except for the

17I theoretically and quantitatively point out that the cross-sectional ranking of the interest elas-
ticities of investment between large and small firms is counterfactually flipped in existing model
frameworks in Appendix A.

18The model with convex and fixed adjustment cost is a prototype of the models in Winberry
(2021) and Koby and Wolf (2020).

22



cross-sectional semi-elasticity ratio.

In each panel, the vertical axis is the interest rate in per cent, and the horizontal

axis is the percentage deviation from the steady-state investment. The horizontal

dotted line indicates the equilibrium interest rate. As the interest rate decreases,

all models’ average deviation of investment from the steady-state increases. In the

baseline model (panel (a)), the ranking of the interest elasticity across the firm-size

group is consistent with the empirical patterns, as can be seen from the steeper curve

of the large firms. However, in the model with convex and fixed adjustment cost

(panel (c)), the large firms’ average deviation of investment from the steady-state

increases faster than small firms as the interest rate decreases. In the model with

a fixed cost only (panel (b)), the interest elasticities of all groups are significantly

higher than the ones in the other two models, as can be checked from the large-scale

variation along the horizontal axis. The elasticities across the different models are

reported and compared in Table B.5 in Appendix B.19

Finally, I compare the business cycle statistics implied in the baseline model with

the aggregate-level data. The aggregate-level data at the annual frequency is from

National Income and Product Accounts (NIPA) data, and the sample period starts

from 1955. All the variables are in log and linearly detrended. Table E.11 reports

the business cycle statistics from the data and the model. Among the statistics, the

time-series volatility of the log output is the targeted moment in the calibration.

The correlations across the aggregate variables in the baseline model are well-

matched with the observed level in the data. Notably, the autocorrelation of aggregate

investment and the cross-correlation between aggregate investment and output are

sharply matched, even if those are not the targeted moments. The model’s moments

are slightly lower than the observed level for the relative volatilities of consumption

and investment.

19The comparison is made over the comparative statics of the fixed cost curvature parameter,
while the other parameters are calibrated to match the same target moments.
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4.2 Synchronization and the cross-section of the interest elas-

ticity

This section studies the synchronization of large firms’ lumpy investment timings and

how it affects the aggregate investment and other aggregate fluctuations. Figure 4

plots the impulse responses of the spike ratios (panel (a)) and iit/kit (panel (b)) ratios

in different models to a negative one-standard-deviation aggregate TFP shock. The

impulse response is computed from the perfect-foresight transition path. The spike

ratio is as defined in (1). Each variables’ time path is normalized by its volatility

(standard deviation) in the simulated path using the global nonlinear solution.

As shown in panel (a), the large firms’ spike ratio in the baseline model (solid line)

surges after a negative aggregate TFP shock, displaying a significant synchronization

of the investment timings among large firms. This magnitude of the large firms’

synchronization is substantially stronger in the baseline model (solid line) than the

model with the linearly size-dependent fixed adjustment cost (dashed line) and the

constant fixed adjustment cost (dash-dotted line). On the other hand, the small

firms’ synchronization (dotted line) is significantly weaker than the large firms’ in

the baseline model. Similar synchronization patterns are observed in the iit/kit ratios

(panel (b)).

This phenomenon happens because a negative aggregate TFP shock triggers a

synchronous stop of large-scale investment projects. Then, as the TFP gradually

recovers over the transition path, large firms tend to implement large-scale invest-

ments at a similar time to the others. If a general equilibrium effect is strong enough,

these synchronized lumpy investment timings are supposed to be smoothed. How-

ever, the baseline’s large firms are inelastic to the general equilibrium effect, so the

synchronization survives even in the general equilibrium environment.

Next, I analyze this synchronization affects the firm and aggregate-level allocations

over the business cycle. Table 4 reports the large firms’ synchronization patterns over

the business cycle across the models (the first block) and the corresponding high-order
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Figure 4: Synchronization after a negative aggregate TFP shock

0 5 10 15 20 25 30
Time (year)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

D
ev

ia
tio

n 
(in

 s
.d

.)

Large: Baseline
Large: Linear
Large: Constant
Small: Baseline

(a) Spike ratio

0 5 10 15 20 25 30
Time (year)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

D
ev

ia
tio

n 
(in

 s
.d

.)

Large: Baseline
Large: Linear
Large: Constant
Small: Baseline

(b) Average iit/kit ratio

Notes: The impulse response of spike ratios are obtained from the transition dynamics to
the stationary equilibrium allocations after an unexpected negative one-standard-deviation
aggregate TFP shock. Each time series are normalized by its standard deviation computed
from the global solution.

moments of the aggregate investment (the second block) and outputs (the bottom

block). All the moments are computed based on the global nonlinear solution, which

I elaborate on in the following section.

The first two rows report the persistence of the time series of the spike ratio,

which is obtained by fitting the series into the AR(1) process. The spike ratio is most

persistent in the baseline model, and its persistence decreases as the order of the size

dependence in the fixed adjustment cost decreases. Once the general equilibrium effect

is lifted by fixing the stochastic discount factor at the steady state (the second row),

the persistence ranking is shuffled, and the model with the constant fixed adjustment

cost features the strongest persistence. This result shows that the large firms’ low

sensitivity to the general equilibrium effect in the baseline model is the key to the

persistent synchronization. On the other hand, the small firms’ persistence of the

synchronization is weakest in the baseline model (the third row).

The following rows in the first block show the high-order moments of the time

series of the large firms’ spike ratio. The spike ratio displays the largest positive
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skewness in the baseline model. That is, the large firms tend to be more synchronized

in the baseline model than in the others. However, the model with the constant

fixed adjustment cost displays the largest skewness in the partial equilibrium. This

shows that the low sensitivity to the general equilibrium effect plays a crucial role

in synchronizing large firms in the baseline model. For the kurtosis, regardless of

the general equilibrium effect, the baseline model features the highest level, while the

relative magnitude of the difference is not as substantial as the skewness differences.

Table 4: Large firms’ synchronization and the aggregate dynamics

Baseline Quadratic Linear Constant

Large firms’ spike ratio

Persistence - GE 0.769 0.745 0.737 0.735
Persistence - PE 0.751 0.746 0.752 0.762
cf. Small firms’ persistence - GE 0.649 0.671 0.690 0.706

Skewness - GE 0.354 0.230 0.195 0.215
Skewness - PE 0.595 0.550 0.586 0.678
Kurtosis - GE 3.235 3.073 2.963 2.935
Kurtosis - PE 5.149 4.947 4.889 4.808

Aggregate investment, log(It)

Skewness -0.124 -0.087 -0.063 -0.055
Kurtosis 2.934 2.904 2.887 2.880

Aggregate output, log(Yt)

Skewness -0.017 -0.009 -0.001 0.009
Kurtosis 2.878 2.875 2.875 2.877

Notes: The table reports the firm-level and aggregate-level statistics in the baseline model, the
models with quadratically and linearly size-dependant fixed costs, and the model with a constant
fixed adjustment cost.

In the following block, I report the high-order moments of the aggregate invest-

ment over the business cycle. The aggregate investment displays the most negative

skewness and the greatest kurtosis in the baseline model. A similar pattern is observed

for the output dynamics reported in the bottom block.

The compared models share the same model structure and are sharply calibrated
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based on the same target moments except for the cross-section of the elasticity dis-

tribution across the large and small firms. Therefore, given the assumption that the

target moments are correctly selected, the differences in the high-order moments in

the aggregate allocations are driven by the differences in the only unmatched moment:

the cross-section of the elasticity distribution. In the following sections, I elaborate

further on how the aggregate investment and output become more negatively skewed

when the large firms’ interest elasticity is as low as the observed level.

4.3 The method for global solution

I solve the model with the aggregate uncertainty using a sequence-space-based global

nonlinear solution method called the repeated transition method. Due to the non-

linear aggregate dynamics, it is difficult to correctly specifying the law of motion

for the endogenous aggregate variable (the firm distribution) in the state-space-based

method. So, I have contemporaneously developed the new methodology in Lee (2024),

which solves nonlinear dynamic stochastic general equilibrium globally and accurately

in the sequence space. The method is described in Appendix D.

4.4 Fragility after a surge of lumpy investments

Based on the global nonlinear equilibrium dynamics, I study how the synchronized

investment timings of large firms affect the aggregate investment dynamics over the

business cycle. First, I define a fragility index that captures the portion of large firms

that have recently finished large-scale investments as follows:

Fragilityt :=

∑
I{sit ≤ s}I{kit > k}∑

I{kit > k}
(37)

where sit is the time from the last lumpy investment of firm i; s is the threshold for sit

to be counted as a recent lumpy investment; k is the size threshold of large firms. If

a great fraction of large firms have just finished a large-scale investment, a relatively
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small fraction of large firms are willing to make a large-scale investment due to the

presence of the fixed adjustment cost. Over the business cycle, the fluctuations in

this index interplay with the exogenous TFP fluctuations, as the following analyses

will conclude.

The median duration between two lumpy investments is 6 years in both the model

and the data. In the regression that includes the fragility index, reported in Table 5,

I found s = 3 maximizes the fitness of the regression. Thus, in the following analysis,

I use s = 3 for the fragility index.20

It is worth noting that the fragility index is constructed from the readily observable

micro-level variables: the past investment history of large firms, most of which are

listed and subject to financial reporting regulations. Therefore, the index can be

measured in a timely manner and can contribute to predicting the near future of

aggregate investment. This feature is starkly contrasted with the existing indices in

the literature based on the joint distribution between capital stock and productivity

that is not directly observable (Caballero and Engel, 1993; Bachmann et al., 2013;

Baley and Blanco, 2021).

Figure 5 shows the time series of fragility index and large firms’ spike ratio in the

simulation (panel (a)) and the data (panel (b)), where each series is normalized by

the standard deviation and demeaned. In both panels, the time series of the spike

ratio leads the fragility index by two to three years. As the average inaction takes

around six years, around three years after a surge of lumpy investment (spike ratio),

a trough is expected to arrive. By the definition of the fragility index, during this

trough of lumpy investment, the index will rise, indicating only a small fraction of

large firms are willing to make a lumpy investment. Therefore, the growth rate of the

spike ratio and the fragility index tend to co-move in the opposite direction. Figure 6

is the scatter plot of the simulated time series where the horizontal axis is the fragility

index normalized by the standard deviation, and the vertical axis is the growth rate

20The main results are not significantly affected by the choice of s.
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Figure 5: Time series of fragility indices in simulation and data
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Notes: Using the histogram method in Young (2010), firms are simulated for 5,000 periods (years)
based on the recursive competitive equilibrium allocations. Panel (a) plots a part of the simulated
allocations, and panel (b) plots the time series in the data. The solid line plots the large firms’ spike
ratio normalized by the standard deviation. The dotted line plots the time series of the fragility
index normalized by the standard deviation.

of the large firms’ spike ratio.21 By fitting the relationship between the fragility and

the growth rate of spike ratio into linear regression, I find the following relationship:

gSpikeRatio
t (%) =− 1.984 ∗ Fragilityt (s.d.) + ϵt, R2 = 0.824 (38)

(0.012) (39)

The relationship indicates that one standard deviation increase in fragility is nega-

tively associated with the growth rate of the large firms’ spike ratio by 1.984%. As

can be seen from the high R2 at 0.824, these two variables are tightly related along

the business cycle. While the growth rate of the large firms’ spike ratio is unknown

ahead of period t, the fragility index is known before period t. Therefore, the fragility

index has predictability for the one-period-ahead growth rate of the large firms’ spike

ratio.

I study how the fragility index fluctuations affect the sensitivity of aggregate

investment growth to the output shock. Table 5 reports the regression result of the

21The past aggregate shock At−1 and the contemporaneous shock At are controlled by taking out
fixed effects. The different colors of the dots are for different combinations of At−1 and At.

29



Figure 6: Fragility index and the growth rate of the large firms’ spike ratio
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Notes: The vertical axis of the scatter plot is the spike ratio in percentage deviation from
the average, and the horizontal axis is the fragility index in the standard deviation from
the average. Using the histogram method in Young (2010), firms are simulated for 5,000
periods (years) based on the dynamic stochastic general equilibrium allocations. The
fragility indices are calculated based on the distribution of large firms.

following specification in both the model and the data separately for negative and

positive output shocks:

gIt = α + βShockOutputShockt + βFragilityOutputShockt × Fragilityt + ϵt (40)

where gIt is the aggregate investment growth rate. OutputShockt is a shock in the log

output, obtained from the residuals in the AR(1) fitting of the log output time series.

The aggregate investment and output data are from National Income and Product

Accounts data. In this specification, OutputShockt exogenously arrives at t, while

the Fragilityt is determined at t − 1. Therefore, two variables are independent of

each other.22

In Table 5, the coefficient estimates from the model and data are statistically

indifferent, while each coefficient is statistically significant. When the fragility index

increases by one standard deviation, the aggregate investment growth rate addition-

ally decreases by around 1.5% and 2.4% for one-standard deviation negative output

22The measurement of output shock is subject to an endogeneity issue which will be discussed
below.
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Table 5: State-dependent sensitivity of the aggregate investment growth

Dependent variable: gIt (p.p.)

(−) OutputShockt (+) OutputShockt

Model Data Model Data

OutputShockt (s.d.) 9.389 5.818 8.490 6.937
(0.066) (1.338) (0.064) (1.221)

OutputShockt × Fragilityt (s.d.) 1.537 2.430 -2.011 -1.486
(0.042) (1.311) (0.045) (0.495)

Constant Yes Yes Yes Yes
Observations 2,296 16 2,705 18
R2 0.908 0.790 0.884 0.705
Adjusted R2 0.908 0.755 0.884 0.663

Notes: The dependent variable is the growth rate of aggregate investment. The independent variables
are output shocks obtained from fitting output series into AR(1) process and the interaction between
the output shock and the fragility index. The fragility index is based on the years from the last
lumpy investment of large firms. The first two columns report the regression coefficients from the
simulated data and Compustat data when the negative output shock hits. The third and fourth
columns report the regression coefficients when the positive output shock hits. The numbers in the
brackets are standard errors.

shock in the model and the data. In contrast, the aggregate investment growth rate

increases less by around 2.0% and 1.5% for one-standard deviation positive output

shock in the model and the data when the fragility index increases by one standard

deviation. The amplifying effect of the negative output shock and the mitigating

effect of the positive output shock under the high fragility state are all due to the

missing lumpy investments of large firms. That is, after a surge of lumpy investments

of large firms, the negative shock leads to a deeper drop in the aggregate investment,

and the positive shock leads to only a mitigated increase in the aggregate investment.

In Table C.6, I report the additional regression results under different specifica-

tions. When the output shock is the only independent variable in the regression,

around 73% and 52% of the investment growth rate variations are explained, respec-

tively, for negative and positive shocks in the data. Once the fragility fluctuation is

considered, R2’s improve to 79% and 71%.
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Using the estimate from the data in Table 5, I quantify the portion of the in-

vestment growth rate that is accounted for by the interaction between the output

shock and the fragility index. Specifically, the fragility-adjusted investment growth

rate gadj,It is obtained as follows:

gadj,It = gIt − β̂Fragility ·OutputShockt × Fragilityt. (41)

Figure 7: Fragility-adjusted investment growth
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Notes: The solid line is the aggregate investment growth rate from NIPA. The dashed line is the
fragility-adjusted investment growth. The dotted line is the average level of the aggregate investment
growth rate.

Figure 7 plots the time series of the raw aggregate investment growth rate (solid

line) and the fragility-adjusted investment growth rate (dashed line). After the ad-

justment, the investment drops during the three recessions are mitigated. Table 6

compares the deviations from the average level for the raw and the fragility-adjusted

investment growth rates in the recent three recessions of the sample period. Around

23% of the deviation from the average level is accounted for by the fragility effect

during recessions. When the standard deviations of each time series are compared,
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around 30% of aggregate investment volatility can be explained by the interaction

effect (0.30 ≊ 0.018/0.060).

Table 6: Investment growth rates during the recessions

Distance between inv. growth rate and average: ∆gIt (p.p.)

Raw data (NIPA) Without fragility Adjusted portion (%)

Recession-1991 -8.019 -6.239 22.197
Recession-2001 -7.695 -5.852 23.951
Recession-2009 -23.112 -17.847 22.780

Notes: The first column reports the investment growth rate (%) at recession years of 1991, 2001,
and 2009 minus the average investment growth (≊ 4.5%). The second column reports the adjusted
investment growth rate after removing the predicted component from the fragility indices using the
coefficients of Table 5. The third column reports the adjusted portion (%).

However, the results above are subject to an endogeneity issue. Specifically, the

measured output shock is not fully exogenous because the fragility dynamics affects

the future output realization. For example, a high fragility lowers the future capital

stock, leading to a lower output. However, the current measurement of the output

shock makes the fragility-driven output drop loaded on the shock magnitude.23 This

problem is hard to solve in a reduced-form approach due to the nonlinear dynamics

of the fragility index.

To sharply quantify the extra variation of aggregate investment driven by the

fragility fluctuations without the endogeneity problem, I utilize the simulated path

of the equilibrium allocations. Specifically, I collect only the periods where a nega-

tive one-standard-deviation TFP shock hits and compare the responsiveness of the

aggregate investments across the different fragility index levels. Each period on the

simulated path features a different fragility index level while the TFP shock’s mag-

nitude is fixed. Therefore, this experiment provides a setup to sharply quantify the

relationship between the investment response variations and the fragility index fluc-

tuations.24

23Therefore, it is likely that the role of the fragility index is underestimated.
24If there are any responsiveness differences, they are from the endogenous aggregate state, the
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Figure 8 is the scatter plots of the state-dependent contemporaneous responses of

the aggregate investment (vertical axis) along with the fragility variation (horizontal

axis) for baseline model (panel (a)) and for a model with convex and constant fixed

adjustment costs (panel (b)). The fragility indices are normalized by the standard

deviation. The responses of the aggregate investments are demeaned and normalized

in percentage deviation from the steady-state level. The prior and contemporaneous

aggregate TFP levels (At−1, At) are controlled by teasing out the pair-specific fixed

effect.25

Figure 8: State-dependent responses of aggregate investment
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Notes: The vertical axis of the scatter plot is the instantaneous response of the aggregate
investment to a negative one-standard-deviation TFP shock in percentage for baseline
model (panel (a)) and a model with convex and constant fixed adjustment costs (panel (b)),
and the horizontal axis is the fragility index measured in the unit of standard deviation
from the average. In each responses, contemporaneous and one-period-prior aggregate
TFP fixed effects are controlled. Using the histogram method in Young (2010), firms are
simulated for 5,000 periods (years) based on the dynamic stochastic general equilibrium
allocations. The fragility indices are calculated based on the distribution of large firms.

As can be seen from the figure, there is a significant negative relationship between

the contemporaneous response of the aggregate investment ∆It and the fragility index

in the baseline model. The negative association is significantly reduced for the model

with convex and constant fixed adjustment costs. By fitting the negative relationship

distribution of firms, as the exogenous states are identical. The fragility index is used as a sufficient
statistic for the endogenous aggregate state in this experiment.

25The different colors of dots represent the different fixed-effect groups.
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in the baseline model into linear regression, I obtain the following result:

∆It (% w.r.t. s.s. response) =− 7.875 ∗ Fragilityt (s.d.) + ϵt, R2 = 0.677

(0.173) (42)

When the fragility index increases by one standard deviation, a contemporaneous

response of the aggregate investment to the negative one-standard-deviation shock is

amplified by 7.875% compared to the steady-state response. On the other hand, in

the model with convex and constant fixed adjustment cost, the coefficient is -2.193,

of which the absolute magnitude is significantly lower than the baseline level. This

shows that the baseline model, where large firms’ inelastic adjustment carries the

nonlinearity, leads to a greater endogenous fragility than the canonical model with

convex and constant fixed adjustment costs.

Lastly, I study how the fragility affects output dynamics through the firm-level

investment channel. When a negative aggregate TFP shock hits, a high fragility

index additionally reduces the future capital stock due to the amplified aggregate

investment response. The reduced capital stock leads to the extra drop in the output

in the following period. Taking the same steps as above, I analyze how the future

output changes along with the fragility variations when a negative one-standard-

deviation TFP shock hits:

∆Yt+1 (p.p. w.r.t. s.s.) =− 0.322 ∗ Fragilityt (s.d.) + ϵt, R2 = 0.631

(0.008) (43)

If the fragility increases by one standard deviation, the future output decreases by

0.322 percentage points through the amplified aggregate investment response to the

negative aggregate shock.
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4.5 Policy implication: State-dependent interest elasticity of

aggregate investment

In this section, I discuss the policy implications of the fluctuations of the fragility index

over the business cycle. In the baseline model economy, the aggregate investment

features a strong history dependence.26 This history dependence not only affects the

aggregate investment’s response to the TFP shock but affects its elasticity to the

interest rate change.

To study how the aggregate investment responds differently to the same interest

shock depending on the fragility state, I hit the economy at each period on the simu-

lated path with an unexpected interest rate shock and compute the contemporaneous

response under the partial equilibrium. I compute the elasticity by taking an average

of the elasticities from positive and negative 1 % interest rate shocks to account for

the asymmetric responses.

Figure 9: State-dependent semi-elasticities of aggregate investment
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Notes: The vertical axis of the scatter plot is the semi-elasticity of aggregate investment in
percentage point deviation from the average, and the horizontal axis is the fragility index
in the standard deviation from the average. For each elasticity, contemporaneous and
one-period-prior aggregate TFP fixed effects are controlled. Using the histogram method
in Young (2010), firms are simulated for 5,000 periods (years) based on the dynamic
stochastic general equilibrium allocations. The fragility indices are calculated based on
the distribution of large firms.

26Given that the aggregate states include all the relevant information from history, the state
dependence and the history dependence are interchangeable in the model.
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Figure 9 is the scatter plot of the interest elasticities of the aggregate investment

in relation to the fragility state. The horizontal axis is the fragility index normalized

by the standard deviation; the vertical axis is the interest elasticity in percentage

deviation from the steady-state level.27 According to the figure, there is a significant

negative relationship between the fragility and the interest elasticity of aggregate

investment. By fitting the relationship into linear regression, I obtain the following

result:

∆Elasticityt (% w.r.t. s.s.) =− 3.350 ∗ Fragilityt (s.d) + ϵt, R2 = 0.689

(0.032) (44)

One standard deviation increase in the fragility index decreases the interest elastic-

ity of aggregate investment by around 3.022% compared to the steady-state level.

The intuitive explanation for the result is that when the fragility index is high, there

are not many large firms that can flexibly participate in and out of large-scale in-

vestment. Therefore, the aggregate investments’ responsiveness to the interest rate

change decreases in a high-fragility state.

To verify that large firms drive interest elasticity fluctuations in aggregate in-

vestment, I compute the elasticity variations separately for large and small firms.

Figure 10 is the scatter plot of interest elasticities along with the fragility variation

for large (panel (a)) and small firms (panel (b)). The negative relationship between

the fragility index and the elasticity is significantly stronger in large firms. When

two different elasticities are fitted into linear regression, the following relationship is

obtained:

27The prior and contemporaneous aggregate TFP levels (At−1, At) are controlled by teasing out
the pair-specific fixed effect, and the different colors of dots represent the different fixed-effect groups.
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Figure 10: State-dependent semi-elasticities of investments: Decomposition
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(a) Large firms
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(b) Small firms

Notes: The vertical axis of the scatter plots is the semi-elasticity of large (panel (a))
and small (panel (b)) firms’ investment in percentage point deviation from the average,
and the horizontal axis is the fragility index in the standard deviation from the average.
For each elasticity, contemporaneous and one-period-prior aggregate TFP fixed effects are
controlled. Using the histogram method in Young (2010), firms are simulated for 5,000
periods (years) based on the dynamic stochastic general equilibrium allocations. The
fragility indices are calculated based on the distribution of large firms.

∆ElasticityLarget (% w.r.t. s.s.) =− 5.257 ∗ Fragilityt (s.d) + ϵt, R2 = 0.655

(0.054) (45)

∆ElasticitySmall
t (% w.r.t. s.s.) =− 1.244 ∗ Fragilityt (s.d) + ϵt, R2 = 0.639

(0.013) (46)

When the fragility index increases by one standard deviation, large firms’ invest-

ment elasticity decreases by around 5.257%. On the other hand, the same variation

in the fragility index decreases small firms’ elasticity by 1.244%, and the difference is

statistically significant. This result shows that large firms dominantly drive the stark

negative relationship between the interest elasticities of the aggregate investments

and the fragility index.

The analysis above implicitly shows that if the fragility index is high, the mone-

tary policy would not effectively operate through the firm-level investment channel.
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Given there were recessions in the recent periods that happened in the time of high

fragility, the policy implication echoes Tenreyro and Thwaites (2016) that conven-

tional monetary policies have been less powerful during recessions especially through

the business investment channels. Moreover, my paper adds to the related literature

by providing an endogenous mechanism for the state dependence of monetary policy

effectiveness. Importantly, the fragility index is a forward-looking variable and can

be easily measured using readily observable large firms’ data. Therefore, the fragility

index can potentially contribute to the optimal monetary policy design in practice.

5 Concluding remarks

This paper analyzes the endogenous state dependence in the aggregate investment

dynamics driven by the synchronized lumpy investments of large firms. An economy

becomes substantially more fragile to a negative aggregate shock after a surge of large

firms’ lumpy investments than it would otherwise be. I show this is due to the interest

inelasticity of the large firms’ investments, which generates persistently synchronized

investment timings even under the general equilibrium. The economic significance of

this channel is quantified in a heterogeneous-firm real business cycle model in which

the cross-section of the semi-elasticities of firm-level investment is matched with the

empirical estimates. In the model, the aggregate investment features a significant

state dependence in the interest elasticities driven by fragility index fluctuations.

This implies that after a surge of large firms’ lumpy investments, the effectiveness

of monetary policy can substantially fall due to the lowered interest elasticity of the

aggregate investment.
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