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Abstract

This paper studies the endogenous state dependence of the aggregate

investment dynamics stemming from synchronized lumpy investments

at the firm level. I develop a heterogeneous-firm real business cycle

model where the semi-elasticities of large and small firms’ investments

are matched with the empirical estimates. In the model, following a

negative TFP shock, the timings of large firms’ lumpy investments are

persistently synchronized due to the low sensitivity to the general equi-

librium effect, leading to a surge of lumpy investments. After the surge,

TFP-induced recessions are especially severe, and the semi-elasticity of

the aggregate investment drops significantly.
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1 Introduction

1980, 1998, and 2007 were the three years with the large surges in the

fraction of large firms making large-scale investments. These three years were

followed by recessions within two years.1 Is it merely a coincidence that invest-

ment surges of large firms precede recessions? This paper studies an endoge-

nous pre-condition of an economy that makes aggregate allocations respond

differently to shocks of the same magnitude. In particular, I study a mech-

anism that makes an economy more fragile to a negative TFP shock after

synchronized large-scale investments of large firms.

The large-scale investment of large firms is distinguished from the others

as they are highly interest-inelastic.2 Then, if a negative TFP shock hits

after a surge of large firms’ lumpy investments, the lowered real interest rate

due to the shrunk investment demand does not motivate the interest-inelastic

large firms to make another round of lumpy investments. Therefore, due to

missing large firms’ investments, the economy suffers from a deeper recession

and slower recovery than it would otherwise do despite a moderate magnitude

of the negative aggregate shock.

To investigate this channel, I develop and analyze a business cycle model

with heterogeneous firms where the semi-elasticities of large and small firms’

investments are matched with the empirical estimates. In the existing models

in the literature, the cross-sectional ranking of the interest-elasticities of in-

vestment between large and small firms are counterfactually flipped: the large

1Following Cooper and Haltiwanger (2006), I define an investment beyond 20% of existing
capital stock as a large-scale capital adjustment. Firms that hold capital stocks greater than
the 90th percentile of the capital distribution in each industry based on the two-digit NAICS
code are defined as large firms.

2I use the terms lumpy investment and large-scale investment interchangeably in this
paper.
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becomes more interest-elastic than the small. I fix this problem by introduc-

ing and calibrating a parameter that governs how the size affects the inaction

bands through the fixed adjustment cost. Using the model, I qualitatively

and quantitatively analyze the amplification of productivity-driven aggregate

fluctuations. Due to the low interest-elasticity, the large firms’ nonlinear in-

vestment patterns are not washed out by the general equilibrium effect, leaving

the lumpy investment timings synchronized persistently after a negative ag-

gregate TFP shock. These synchronized investments of large firms generate

macro-level state dependence.

Large firms are a particular focus of this paper for three reasons. First,

large firms are insensitive to fluctuations in macroeconomic conditions, in-

cluding the general equilibrium effect. Therefore, their firm-level nonlinearity

generates a significant macro-level nonlinearity in the aggregate investment

dynamics, while small firms do not. Second, large firms are the most ob-

servable group of firms as most of them are listed and subject to financial

disclosure regulations mandated by the U.S. Securities and Exchange Com-

mission (SEC). Therefore, any forward-looking information contained in the

large firms’ investment dynamics can be traced in a timely manner and be

conducive to designing contemporaneous policies. I show that fragility indices

constructed based on both Compustat data and the simulated data of only

large firms consistently display a significant predictive power on the aggregate

investment sensitivity to aggregate TFP shocks. Lastly, large firms account

for a substantial portion of the aggregate investment. Therefore, the large

firms’ investment fluctuations significantly impact the aggregate investment

dynamics.

The state dependence in the business cycle induced by the firm-level hetero-

geneity has been underexplored in the related literature due to the computa-
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tional difficulty: the true nonlinear law of motion for the distribution cannot

be properly specified. Using a new methodology concurrently developed in

Lee (2023), I globally and accurately solve the nonlinear dynamic stochas-

tic general equilibrium without a perfect foresight assumption. By doing so,

the endogenous state dependence in the aggregate investment fluctuation is

sharply quantified in this paper.

Especially, I develop a fragility index based on the large firms’ recent capital

adjustment history. This index has predictive power on the one-period-ahead

investment growth and serves as a sufficient statistic on the post-shock dy-

namics of the aggregate investment after a TFP shock. In practice, this index

is relatively easy to trace contemporaneously compared to other indices in the

literature, as the index is based on large firms’ readily observable data (e.g.,

10-K/Q reports or Compustat data). Using the fragility index, I show that

the economy becomes significantly more fragile to a negative aggregate shock

after a surge of lumpy investment of large firms, and I validate the model

implication with the data.

Lastly, I show that aggregate investment’s interest elasticity depends on the

level of the fragility index over the business cycle. This result implies that the

monetary policy’s effectiveness can be low after a surge of large firms’ lumpy

investments.3 Also, this provides a solid explanation of why monetary policy

has not been effective during the recessions, especially through the business

investment channel (Tenreyro and Thwaites, 2016).

Related literature This paper is related to the literature that studies how

firm-level lumpy investments affect the business cycle. Abel and Eberly (2002)

3The policy implication is limited to a positive implication, as the model does not include
a monetary policy block.
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empirically showed that firm-level investments feature statistically and eco-

nomically significant nonlinearity. They point out that tracking the cross-

sectional distribution of firm-level investments is necessary to account for ag-

gregate investment. Cooper et al. (1999) and Gourio and Kashyap (2007)

found that aggregate investment is largely driven by establishment-level capi-

tal adjustment in the extensive margin. Especially, Cooper et al. (1999) found

that synchronized lumpy investments can generate an echo effect of aggregate

shocks in partial equilibrium. Gourio and Kashyap (2007) pointed out that

if a fixed cost is drawn from a highly concentrated non-uniform distribution,

aggregated lumpy investments show different impulse responses than friction-

less models. In contrast, Khan and Thomas (2008) found that lumpiness in

investment at the establishment level is washed out after aggregation due to a

strong general equilibrium effect. Towards this point, my paper shows that the

lumpiness in the firm-level investment survives the aggregation if the interest-

elasticity is disciplined at the empirically observed range.

The fragility index of my paper is closely related to several papers measur-

ing the responsiveness of an economy to exogenous aggregate shocks. Caballero

et al. (1995) develops a micro-level adjustment-hazard function that captures

heterogeneous price adjustment probability. The dynamics in the cross-section

of the hazard rates generate substantial nonlinearity in the economy’s aggre-

gate dynamics. Bachmann et al. (2013) defines a responsiveness index as a

function of aggregate productivity and sufficient statistics of the joint distri-

bution of capital stocks and idiosyncratic productivities. They show that the

responsiveness index is significantly driven by the fraction of capital-adjusting

firms. Baley and Blanco (2021) shows that two sufficient statistics can char-

acterize aggregate investment dynamics: 1) the capital-to-productivity ratio’s

dispersion and 2) its covariance with the duration of inaction. Compared to
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these papers, my paper highlights the role of the marginal distribution of large

firms’ inaction duration over the business cycle, which is readily observable in

the data in a timely manner due to their mandated financial disclosure.

Also, this paper is related to the literature studying the state-dependent ef-

fectiveness of monetary policy. The most closely related paper is Tenreyro and

Thwaites (2016), which shows that business investment and durables expen-

diture are less responsive to monetary policies during recessions. I document

that the rising fragility index substantially accounts for the investment drop

during the recession of the dot-com bubble crash. At the same time, I show

that the interest-elasticity of aggregate investment significantly decreases in

the fragility index. According to this result, monetary policy could not have

functioned effectively during the dot-com bubble crash. Likewise, my paper

gives a micro-founded explanation of why monetary policy is not effective dur-

ing a recession. Going one step further, it provides a testable implication:

monetary policy in a recession not preceded by a surge of large firms’ lumpy

investments might be as effective as in normal years.

Lastly, this paper contributes to the nonlinear business cycle literature. A

large body of research has focused on the nonlinearity in aggregate fluctuations

that arise when heterogeneous agents are subject to micro frictions. Berger

and Vavra (2015) concludes that lumpiness in households’ durable adjustment

results in pro-cyclical responsiveness of aggregate durable expenditures to an

aggregate shock. Fernandez-Villaverde et al. (2022) found that financial fric-

tions can generate endogenous aggregate risk under the heterogeneous house-

hold model. In this setup, the aggregate allocations display state-dependent

responsiveness to an aggregate TFP shock. Volatility shocks to real inter-

est rates studied in Fernandez-Villaverde et al. (2011) and uncertainty shocks

in Bloom et al. (2018) are also highlighted as an important source of the
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nonlinearity in the business cycle. To this literature, this paper contributes

by analyzing interest-inelastic large firms’ lumpy investments as a significant

source of nonlinearity in the aggregate investment dynamics.

Roadmap Section 2 shows motivating facts about surges of large firms’

lumpy investments before and after the recessions. Section 3 develops a

heterogeneous-firm business cycle model where the cross-section of the interest-

elasticities is matched with the empirical estimates. Section 4 analyzes the

macroeconomic implications of the calibrated model. Section 5 concludes.

Proofs and other detailed figures and tables are included in appendices.

2 Motivating fact

In this section, I empirically analyze the cyclical pattern of the lumpy

investments of large firms. I use U.S. Compustat data for the firm-level em-

pirical analysis. While Compustat data covers only public firms, its coverage

is relatively less of an issue in this analysis because the focus is on large firms.

Throughout the empirical analysis, large firms are defined as firms that hold

capital stocks greater than the 40th percentile of the capital distribution in

each industry of the two-digit NAICS code. The choice of the 40th percentile

is to define large firms in the Compustat space consistent with large firms

in Zwick and Mahon (2017), which estimated the interest-elasticities of firm-

level investments.4 The sample period covers from 1980 to 2016. Firms with

negative assets and zero employment are excluded from the sample. All the

firm-level variables except capital stock and investment are deflated by the

4In Zwick and Mahon (2017), large and small firms are defined as the top 30% and
bottom 30% of sales distribution. From the size cutoffs (15.4M, 48.8M) in terms of sales in
the years 1998 through 2000 and 2005 through 2007 (Table B.1, panel (d)), I compute the
corresponding capital size cutoffs in Compustat.
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GDP deflator. Investment is deflated by non-residential fixed investment de-

flator available from National Income and Product Accounts data (NIPA Table

1.1.9, line 9). The firm-level real capital stock is obtained by applying the per-

petual inventory method to net real investment. The industry is categorized

by the first two-digit NAICS code.5

2.1 Surges of large firms’ lumpy investments and reces-

sions

In the following analysis, I empirically analyze the relationship between

large firms’ lumpy investments and the timing of recessions. I define an in-

vestment spike as a firm-specific event where a firm makes a large-scale in-

vestment greater than 20% of the firm’s existing capital stock.6 I refer to this

investment spike as a lumpy investment or capital adjustment in the extensive

margin interchangeably. Then, I define spike ratio as follows:

Spike ratioj,t :=

∑
i∈j

I{iit/kit > 0.2}

# of j-type firms at t
, j ∈ {small, large}

The numerator counts all the incidences of investment spikes from firm type

j ∈ {small, large} at time t, and it is normalized by the total number of j-type

firms.

Figure 1 plots the time series of the spike ratio of large firms. On average,

5If only SIC code is available for a firm, I imputed the NAICS code following online
appendix D.2 of Autor et al. (2020). If both NAICS and SIC are missing, I filled in the next
available industry code for the firm.

620% cutoff is from the non-convex adjustment cost literature (Cooper and Haltiwanger,
2006; Gourio and Kashyap, 2007; Khan and Thomas, 2008). If a firm’s acquired capital
stock is greater than 5% of existing capital stock in a certain year, I rule out the observation
from the sample due to possible noise in the reported items in the balance sheet during the
acquisition year.
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Figure 1: Three surges of large firms’ lumpy investments before recessions
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Notes: The firm-level large-scale investment is defined as an investment greater than 20%
of the existing capital stock. The solid line plots the time series of the fraction of large firms
making large-scale investments. The grey areas highlight the NBER recession periods.

9.2% of large firms adjust their existing capital stocks in the extensive margin

in a year. As can be seen from Figure 1, since 1980, there have been only four

periods (1980, 1996, 1998, and 2007) where the fraction of large firms making

spiky investments surged beyond one-standard deviation. Three out of the

four events were followed by recessions within two years.

Conversely, there were four recessions in the U.S. over the same period, and

three out of four recessions were preceded by the surge of large firms’ lumpy

investments. The exception was the recession in 1990, and it was the mildest

recession among the four recessions.

In the following analysis, I show aggregate investment rate is conditionally

heteroskedastic on the average lagged spike ratio of large firms. That is, the

residualized volatility of aggregate investment rate is high if a great fraction

of large firms have made lumpy investments in recent years.

For this analysis, I use aggregate data on non-residential investment (NIPA

Table 1.1.5, line 9) and aggregate capital (Fixed Asset Accounts Table 1.1, line

4) from BEA. The thick line in Figure 2 plots the estimates of the log standard

deviation of residuals from the autoregression of aggregate investment rates as

9



Figure 2: Conditional heteroskedasticity of aggregate investment
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Notes: The estimated standard deviation of the residual (y-axis) is obtained from fitting
the aggregate investment-to-capital ratio (%) into an autoregressive process with four lags.
The average lagged spike ratio of large firms (%) is obtained by averaging the most recent
past two spike ratios for each observation of residualized investments. The years overlaid
on the dots are the observation year of the residualized investment-to-capital ratios.

a function of the recent average of large firms’ spike ratio.7 The recent average

is based on the average spike ratio of the past three years. As can be seen

from this figure, aggregate investment rates are heteroskedastic conditional on

the lagged average spike ratio. Table E.9 reports the regression coefficients for

the fitted line. According to the regression result, a one-standard-deviation

increase (1.47%) in the large firms’ past spike ratio is associated with a one-

standard-deviation increase (0.50%) in the aggregate investment’s residualized

volatility. Consistent with the patterns in Figure 1, the three recession years

of interest are located at the top-right corner in Figure 2.

3 Model

I develop and analyze a heterogeneous-firm real business cycle model in

which the cross-section of the semi-elasticities of firm-level investment is matched

7This empirical analysis is motivated from the conditional heteroskedasticity analysis in
Figure 1 of Bachmann et al. (2013).
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with the empirical estimates. In the model, time is discrete and lasts forever.

There is a continuum of measure one of firms that own capital, produce busi-

ness outputs, and make investments. The business output can be reinvested

as capital after a firm pays adjustment costs.

3.1 Technology

A firm owns capital. It produces a unit of goods that can be converted to

a unit of capital after paying an adjustment cost. The production technology

is a Cobb-Douglas function with decreasing returns to scale:

zitAtf(kit, lit) = zitAtk
α
itl

γ
it, α+ γ < 1

where kit is firm i’s capital stock at the beginning of period t; lit is labor

input; zit is idiosyncratic productivity; At is aggregate TFP. Idiosyncratic

productivity, zit, and aggregate TFP, At, follow the stochastic processes as

specified below:

ln(zit+1) = ρzln(zit) + ϵz,t+1, ϵz,t+1 ∼iid N(0, σz)

ln(At+1) = ρAln(At) + ϵA,t+1, ϵA,t+1 ∼iid N(0, σA)

where ρs and σs are persistence and standard deviation of i.i.d innovation in

each process s ∈ {z, A}, respectively. Both stochastic processes are discretized

using the Tauchen method in computation.

3.1.1 Investment and adjustment cost

I assume a firm-level large-scale investment could be made only after paying

a total adjustment cost, Cit, which varies over firm-level allocations. The
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total adjustment cost is a function of capital stock, kit, investment size Iit,

and a fixed cost shock ξit ∼iid Unif [0, ξ] as in Winberry (2021). And this

total adjustment cost is composed of two additively separable parts: a convex

adjustment cost and a fixed adjustment cost. The convex adjustment cost is

a function of the current capital stock, kit, and the investment Iit as assumed

in the literature. The fixed adjustment cost, Fit, is a function of the current

capital stock kit and a fixed cost shock ξit ∼iid Unif [0, ξ]. The fixed cost does

not incur if a firm adjusts capital within a moderate range (Iit ∈ Ω(kit) :=

[−νkit, νkit]). A firm needs to pay a fixed cost for investment beyond this

range. The fixed cost is assumed to be overhead labor cost, so it varies over

the business cycle due to wage fluctuations.8

To summarize, I assume the following total adjustment cost structures:

Cit = C(kit, Iit, ξit;wt)

= µ

(
Iit
kit

)2

kit + F (kit, ξit)wt

F (kit, ξit) =

ξitk
ζ if Iit ̸∈ Ω(kit) = [−νkit, νkit]

0 if Iit ∈ Ω(kit) = [−νkit, νkit]

This model’s difference from the existing literature is the size-dependent

fixed cost parametrized by the extensive-margin elasticity dispersion parame-

ter, ζ. As ζ increases, the extensive-margin elasticity gap between small and

large firms widens, leaving the cross-section of the interest-elasticity consis-

tent with the empirical level in Zwick and Mahon (2017) and Koby and Wolf

(2020). In Section 4, I quantitatively investigate how the ζ parameter affects

the dispersion of interest-elasticity.

8This setup is following Khan and Thomas (2008) and Winberry (2021).

12



3.1.2 Size-dependent fixed cost: A theoretical explanation

In this section, I provide a theoretical ground for size-dependent fixed cost.

The presence of a fixed cost for the firm-level investment has been widely

accepted in the literature. However, it has been relatively less investigated

whether the fixed cost occurs at the establishment or firm levels. Depending

on the model specification and the granularity of the data, each paper flexibly

defines the fixed cost.

In this paper, the fixed cost is modeled at the firm level, but its functional

form is grounded on the establishment-level fixed cost. I argue that if a firm

decides to make a large-scale investment by expanding establishments, fixed

cost occurs at each existing establishment due to interdependence across the

establishments. For example, if a new establishment is constructed, the pro-

duction lines in the existing establishments have to be adjusted to coordinate

with the new one, and managers have to be reallocated across the different

production units. Therefore, intuitively, firm-level fixed cost increases in the

number of establishments and the degree of interdependence across the estab-

lishments.

To sharpen the theoretical points, let’s assume a firm has n establishments

and plans to expand a new factory. Then, if establishments are coordinated

pairwise, and if the fixed cost of each coordinated pair is ξ, the total firm-level

fixed cost F is as follows:

F2 =

n

2

× ξ =
n(n− 1)

2
ξ

which features quadratic growth in the number of establishments. This was
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when each establishment is interdependent pairwise. Then, if an establish-

ment’s operation is dependent on ζ − 1 number of other establishments on

average, the firm-level fixed cost becomes as follows:

Fζ =

n

ζ

× ξ =
n(n− 1)(n− 2) . . . (n− ζ + 1)

ζ!
ξ

The firm-level fixed cost Fζ exponentially increases in the number of estab-

lishments to the power of ζ. For a higher interdependence across the estab-

lishments, the fixed cost increases faster. Even if the source of the fixed cost

is not at the establishment level, the intuitive explanation is that the interde-

pendence across the basic operation unit (e.g., department or team) convexly

raises the complexity inside the firm. And this increases the firm-level fixed

cost when the firm makes a large-scale capital adjustment.

In this paper, the number of establishments (or basic production units) is

proxied by the total capital stock kit. This is consistent with Cao et al. (2019).

Using the US administrative data, Cao et al. (2019) points out that the firm

growth is substantially driven by the expansion in the number of establish-

ment. Therefore, the number of establishments is well-proxied by the size of

the capital stock kit.

3.2 Household

A stand-in household is considered. The household consumes, supplies

labor, and saves in a complete market. In the beginning of a period, the

household is given with an equity portfolio a, information on the contempora-

neous distribution of firms Φ, and the aggregate TFP level A. The household

problem is as follows:
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V (a;S) = max
c,a′,lH

log(c)− ηlH + βEV (a′;S ′)

s.t. c+

∫
ΓA,A′q(S, S ′)a(S ′)dS ′ = w(S)lH + a(S)

GΦ(S) = Φ′, P(A′|A) = ΓA,A′ , S = {Φ,A}

where V is the value function of the household; Φ is a distribution of firms;

A is an aggregate productivity; ΓA,A′ is the state transition probability; c is

consumption; a′ is a state-contingent future saving portfolio; lH is labor supply;

w is wage, and r is real interest rate. Household is holding the equity of firms

as their asset.

From the household’s first-order condition and the envelope condition, I

obtain the following characterization of the stochastic discount factor q(S, S ′):

q(S, S ′) = β
C(S)

C(S ′)

I define p(S) := 1
C(S)

. In the recursive formulation of a firms’ problem in the

next section, I use p(S) to normalize the firm’s value function following Khan

and Thomas (2008).

3.3 A firm’s problem: Recursive formulation

In this section, I formulate a firm’s problem in the recursive form. A firm

is given with capital k, an idiosyncratic productivity z, in the beginning of

a period. Also, they are given with the knowledge on the contemporaneous

distribution of firms Φ and the aggregate TFP level A. For each period, firm

determines investment level I and labor demand nd. A firm’s problem is

formulated in the following recursive form:

15



J(k, z;S) = π(k, z;S) + (1− δ)k

+

∫ ξ

0

max {R∗(k, z;S)− F (k, ξ)w(S), Rc(k, z;S)} dGξ(ξ) (1)

R∗(k, z;S) = max
k′≥0

− k′ − c(k, k′) + Eq(S, S ′)J(k′, z′;S ′)

Rc(k, z;S) = max
kc∈Ω(k)

− kc − c(k, kc) + Eq(S, S ′)J(kc, z′;S ′)

The following lines explain the details of each component in the value functions.

(Operating profit) π(z, k;S) := max
nd

zAkαnγ
d − w(S)nd (nd: labor demand)

(Convex adjustment cost) c(k, k′) :=
(
µI/2

)
((k′ − (1− δ)k)/k)

2
k

(Size-dependent fixed cost) F (k, ξ) := ξkζ

(Constrained investment) kc ∈ Ω(k) := [−kν, kν] (ν < δ)

(Idiosyncratic productivity) z′ = Gz(z) (AR(1) process)

(Stochastic discount factor) q(S, S ′) = β (C(S)/C(S ′))

(Aggregate states) S = {A,Φ}

(Aggregate law of motion) Φ′ := H(S), A′ = GA(A) (AR(1) process),

Then, I multiply p(S) = 1/C(S) on the both sides of line (1) to obtain

p(S)J(k, z;S) = p(S)(π(k, z;S) + (1− δ)k)

+

∫ ξ

0

max {p(S)R∗(k, z;S)− p(S)w(S)F (k, ξ), p(S)Rc(k, z;S)} dGξ(ξ)

I define the normalized value functions as follows:
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J̃(k, z;S) := p(S)J(k, z;S)

R̃∗(k, z;S) := p(S)R∗(k, z;S)

R̃c(k, z;S) := p(S)Rc(k, z;S)

It is necessary to check whether the recursive formulation naturally follows for

the normalized value functions. Using p(S)q(S, S ′) = βp(S ′),

R̃∗ = max
k′≥0

(−k′ − c(k, k′))p(S) + Ep(S)q(S, S ′)J(k′, z′;S ′)

= max
k′≥0

(−k′ − c(k, k′))p(S) + Eβp(S ′)J(k′, z′;S ′)

= max
k′≥0

(−k′ − c(k, k′))p(S) + βEJ̃(k′, z′;S ′)

Similarly,

R̃c = max
kc∈Ω(k)

(−kc − c(k, kc))p(S) + βEJ̃(kc, z′;S ′).

Therefore, the recursive form is preserved for the normalized value functions.

As in Khan and Thomas (2008), the recursive form based on the normalized

value function eases computation of the dynamic stochastic general equilibrium

because the price, p, depends only on the current aggregate state variable, S.

A firm makes a large scale investment only if R∗(k, z;S) > Rc(k, z; s).

Therefore, a firm-level extensive-margin investment decision can be character-

ized by the threshold rule, gξ∗ , as follows:

gξ∗(k, z;S) = min

{
R̃∗(k, z;S)− R̃c(k, z;S)

w(S)p(S)kζ
, ξ

}
.

This threshold rule is distinguished from the threshold rules in other existing

models in that the threshold weakly decreases in the size of a firm. In other

words, the required marginal benefit of large-scale investment is greater for
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large firms to make the extensive-margin investment than for small firms.

This generates an empirically-supported cross-section of interest-elasticities. I

quantitatively show this in Section 4.

I denote gk∗ as the optimal future capital stock conditional on the extensive-

margin investment, gkc as the optimal future capital stock conditional on the

small-scale investment, and gk as the unconditional optimal investment.

Then, the following relationship holds:

gk(k, z;S) =

gk∗(k, z;S) if ξ < gξ∗(k, z;S)

gkc(k, z;S) if ξ ≥ gξ∗(k, z;S).

That is, if a fixed cost shock ξ is less than the threshold, a firm makes a large-

scale investment.

3.4 Recursive competitive equilibrium

In this section, I define the recursive competitive equilibrium in the econ-

omy.

(gc, ga, glH , gk∗ , gkc , gξ∗ , gnd
, Ṽ , J̃ , R̃∗, R̃c, p, w,G,H) is a recursive competitive

equilibrium if the following conditions are satisfied.

1. gc, glH , Ṽ and ga, solves the household’s problem.

2. gk∗ , gkc , gξ∗ , gnd
, J̃ , R̃∗, and R̃c solve a firm’s problem.

3. Market Clearing:
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(Labor Market)

glH(Φ;S) =

∫ (
gnd

(k, z;S) +

(
gξ∗(k, z;S)

ξ

)(
gξ∗(k, z;S)

2

)
kζ

)
dΦ

(Product Market)

gc(Φ;S) =

∫ (
zAkαgnd

(k, z;S)γ

−
(
(gk∗(k, z;S)− (1− δ)k) + c(k, gk∗(k, z;S))

)
× gξ∗(k, z;S)

ξ

−
(
(gkc(k, z;S)− (1− δ)k) + c(k, gkc(k, z;S))

)
× 1− gξ∗(k, z;S)

ξ

)
dΦ

4. Consistency Condition:9

(Consistency) GΦ(Φ) = H(Φ) = Φ′, where for ∀K ′ ⊆ K and z′ ∈ Z,

Φ′(K ′, z′) =

∫
Γz,z′

(
I{gk∗(k, z;S) ∈ K ′}gξ

∗(k, z;S)

ξ

+ I{gkc(k, z;S) ∈ K ′}1− gξ∗(k, z;S)

ξ

)
dΦ

4 Quantitative analysis

This section quantitatively analyzes the macroeconomic implications of

large firms’ lumpy investments. First, I discipline the baseline model to fit

the data moments by calibration. Especially, the different interest elastici-

ties between small and large firms are the key moments to be fitted, which are

hardly captured in alternative models. Second, I study the nonlinear dynamics

of lumpy investments using impulse response analysis. The nonlinear dynam-

ics arise from the synchronization of large-scale investment timing. Lastly, I

9K and Z are the supports of the marginal distributions of capital and productivity
induced from Φ.
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quantitatively analyze how the large firms’ synchronization pattern affects the

aggregate investment dynamics after a one-standard-deviation TFP shock and

the aggregate interest-elasticity.

4.1 Calibration

In this section, I elaborate on how the model is fitted to the data and

compare the fitness with alternative models. Table 1 reports the target and

untargeted moments from the data and the simulated moments in the model.

Table 2 reports the calibrated parameters given the fixed parameters reported

in Table E10. In the simulation step, I use the non-stochastic method in Young

(2010).

Table 1: Fitted Moments

Moments Data Model Reference

Targeted moments
Semi-elasticity of investment (%) 7.20 6.63 Zwick and Mahon (2017)
Cross-sectional semi-elasticity ratio (%) 1.95 2.13 Zwick and Mahon (2017)
Cross-sectional average of it/kt ratio 0.10 0.10 Zwick and Mahon (2017)
Cross-sectional dispersion of it/kt (s.d.) 0.16 0.16 Zwick and Mahon (2017)
Cross-sectional average spike ratio 0.14 0.14 Zwick and Mahon (2017)
Positive investment rate 0.86 0.86 Winberry (2021)
Time-series volatility of log(Yt) 0.06 0.07 NIPA data (Annual)

Untargeted moments (all in yrs.)
Average inaction periods 6.38 7.72 Compustat data
Dispersion of inaction periods 4.87 5.50 Compustat data
Average of lag diff. of inaction periods 0.27 0.67 Compustat data
Dispersion of lag diff. of inaction periods 6.47 8.36 Compustat data

Notes: The data moments are from the sources specified in the reference column. The
same sample restriction as in the empirical analysis applies to Compustat data. I use
linearly detrended real GDP from the National Income and Product Accounts at the annual
frequency for the aggregate output volatility.

The target semi-elasticity of average investment is from Zwick and Mahon

(2017). The cross-sectional semi-elasticity ratio is also from the same paper,
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which documents that small firms’ investments are around twice elastic as large

firms towards the interest rate change. In the paper, large and small firms are

defined as the top 30% and bottom 30% firms in terms of size, respectively. I

define large and small firms consistently in the model with their definition. The

cross-sectional average and dispersion of the investment-to-capital ratio and

the average spike ratio are targeted to match the levels in Zwick and Mahon

(2017) as in Winberry (2021). Consistent with the literature, I define the spike

ratio as the fraction of firms investing greater than 20% of the existing capital

stock. The target of positive investment rate is from Winberry (2021). The

positive investment rate is defined as the fraction of firms with an investment

that is greater than 1% but smaller than 20% of existing capital stock. Only

a negligible fraction of firms make a negative investment in both data and

the model. To discipline the aggregate TFP-driven fluctuations in the model,

I target the output volatility calculated from annual National Income and

Product Accounts (NIPA) data.

Table 2: Calibrated Parameters

Parameters Description Value

Internally calibrated parameters
ζ Fixed cost curvature 3.500

ξ Fixed cost upperbound 0.440
µI Capital adjustment cost 0.780
ν Small investment range 0.041
σ Standard deviation of idiosyncratic TFP 0.130
σA Standard deviation of aggregate TFP shock 0.025

Externally estimated parameters
ρ Persistence of idiosyncratic TFP 0.750

Notes: Parameters in the upper part of the table are calibrated to match the
moments in Table 1. The persistence of idiosyncratic TFP is directly computed
from fitting the estimated firm-level TFP (Compustat) into AR(1) process. The
firm-level TFP is estimated following Ackerberg et al. (2015) using US Compustat
data.
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In the model, variations in the fixed cost parameter and convex adjust-

ment cost parameter lead to a sharply divergent effect on the dispersion of the

investment rate (investment-to-capital ratio), while both lowers the average in-

vestment rate. For a higher fixed cost parameter, the dispersion of investment

rate is higher as the difference in the investment rate between extensive-margin

adjusters and non-adjusters increases.10 On the other hand, a higher convex

adjustment cost uniformly mutes down the investment rate, leading to a lower

dispersion in the investment rate. These two divergent effects, together with

the average investment rate, identify the fixed and convex adjustment cost

parameters.

The fixed cost curvature parameter ζ is identified from the cross-sectional

semi-elasticity ratio between small and large firms. As ζ increases beyond

unity, the large firms’ interest-elasticity decreases due to the lengthened (S, s)

band.11 The calibrated level of ζ is 3.5, which I interpret as 3.5 establishments

are involved per production line on average.

As can be seen from Table 1, the baseline model (column 1) can cor-

rectly capture the cross-sectional elasticity ratio between small and large firms.

Therefore, the baseline model provides an appropriate framework for analyz-

ing the role of large firms’ investment in the dynamic stochastic general equi-

librium. This is one of this paper’s contributions, as the interest-elasticity

cross-section is not well-captured in the existing model framework.12
Figure 3 visualizes the large and small firms’ interest-elasticities for the

10If a fixed cost is too high, the fraction of adjusters become too small to have meaningful
contribution to the investment rate dispersion.

11Gnewuch and Zhang (2022) studies how monetary policy shock affects the distribution of
investment rates, and they document that young firms are more sensitive to the shock than
old firms. In this elasticity difference, they conclude that the extensive-margin sensitivity
plays a crucial role, consistent with the results in my paper.

12I theoretically and quantitatively point out that the cross-sectional ranking of the
interest-elasticities of investment between large and small firms is counterfactually flipped
in existing model frameworks in Appendix A.
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Figure 3: Semi-elasticities of investments across different models
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(a) Baseline
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(b) Fixed cost only
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(c) Convex + Fixed

Notes: The figure plots the deviation of investment from the steady-state level when the
interest rate changes for each different model. The vertical axis is the interest rate in per
cent, and the horizontal axis is the percentage deviation from the steady-state investment.
The horizontal dotted line indicates the equilibrium interest rate.

baseline model (panel (a)), for a model with fixed cost only (panel (b)), and

for a model with convex and fixed cost (panel (c)).13 In each panel, the vertical

axis is the interest rate in per cent, and the horizontal axis is the percentage

deviation from the steady-state investment. The horizontal dotted line indi-

cates the equilibrium interest rate. As the interest rate decreases, all models’

average deviation of investment from the steady-state increases. In the base-

line model (panel (a)), the ranking of the interest elasticity across the firm-size

group is consistent with the empirical patterns, as can be seen from the steeper

curve of the large firms. However, in the model with convex and fixed adjust-

ment cost (panel (c)), the large firms’ average deviation of investment from

the steady-state increases faster than small firms as the interest rate decreases.

In the model with a fixed cost only (panel (b)), the interest-elasticities of all

groups are significantly higher than the ones in the other two models, as can

be checked from the large-scale variation along the horizontal axis.

13The model with convex and fixed adjustment cost is a prototype of the models in
Winberry (2021) and Koby and Wolf (2020).
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Finally, I compare the business cycle statistics implied in the baseline model

with the aggregate-level data. The aggregate-level data at the annual fre-

quency is from National Income and Product Accounts (NIPA) data, and the

sample period starts from 1955. All the variables are in log and linearly de-

trended. Table E.11 reports the business cycle statistics from the data and

the model. Among the statistics, the time-series volatility of the log output is

the targeted moment.

The correlations across the aggregate variables in the baseline model are

well-matched with the observed level in the data. Especially, the autocorre-

lation of aggregate investment and the cross-correlation between the aggre-

gate investment and output are sharply matched even if they are not the

targeted moment. For the relative volatilities of consumption and investment,

the model’s moments are slightly lower than the observed level.

4.2 Synchronization

In this section, I analyze how the large and small firms differently respond

to the same productivity shock using the impulse response analysis. Figure

4 plots the impulse responses of the spike ratios of large and small firms to

the negative one-standard-deviation aggregate TFP shock.14 The impulse re-

sponse is obtained from the method that computes the transition path to

the stationary allocation after an unexpected negative one-standard deviation

TFP shock. All the responses are expressed in percentage deviation from the

steady-state level.

Upon the arrival of the negative aggregate TFP shock, the extensive-margin

investment timings are synchronized for a large group of firms regardless of

14The shock is assumed to be as persistent as the calibrated aggregate TFP shock.
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Figure 4: Impulse response of spike ratio
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Notes: The impulse response of spike ratios are obtained from the tran-
sition dynamics to the stationary equilibrium allocations after an unex-
pected negative one-standard-deviation TFP shock.

their size. It is because the firms realize it is not a good idea to install new

large-scale capital as the business prospect is not promising in the near future.

So, firms that are ready for the extensive-margin investment tend to delay the

plan, leading to synchronized timings of large-scale investments.15 The dy-

namics of the investment timings after this initial synchronization are starkly

different across the different firm size groups.

For large firms, initial synchronization leads to a surge in spiky investments.

This is because the large firms are interest-inelastic in the model and thus are

strictly less affected by the general equilibrium effect. Therefore, the timings

of large firms’ lumpy investments are persistently synchronized.

On the other hand, the synchronized investment timings of small firms are

spread out over the post-shock period. This is because the general equilib-

rium effect makes the small firms deviate from the concentrated period for

15In other words, it is an exogenous aggregate shock that initially synchronizes the in-
vestment timings of the firms.
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large-scale investment. In other words, the general equilibrium effect strongly

smoothens their investment timings.

4.3 Fragility after a surge of lumpy investments

I solve the model with the aggregate uncertainty using a new methodology

called the repeated transition method. Due to the highly nonlinear aggre-

gate dynamics, the existing solution algorithms fail to accurately compute the

solution. So, I have contemporaneously developed the new methodology in

Lee (2023), which can solve nonlinear dynamic stochastic general equilibrium

globally and accurately without specifying the aggregate law of motion. The

method is described in Appendix D. Using the equilibrium allocations obtained

from the new methodology, I study how the synchronized investment timings

of large firms affect the aggregate investment dynamics over the business cycle.

First, I define a fragility index that captures the portion of large firms that

have just finished large-scale investments as follows:

Fragilityt :=

∑
I{sit ≤ s}I{kit > k}∑

I{kit > k}

where sit is the time from the last lumpy investment; s is the threshold where

any firm i with sit below the level has recently adjusted its capital in the

extensive margin; k is the size threshold of large firms. If a great fraction

of large firms have just finished a large-scale investment, a relatively small

fraction of large firms are willing to make a large-scale investment due to the

presence of the fixed adjustment cost. Over the business cycle, the fluctuations

in this index interplay with the exogenous TFP fluctuations, as the following

analyses will conclude.

The median duration between two lumpy investments is 6 years in both

the model and the data. In the regression that includes the fragility index,
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reported in Table 3, I found s = 3 maximizes the fitness of the regression. The

size cutoff k is set consistent with Section 2.

It is worth noting that the fragility index is constructed from the read-

ily observable micro-level variables. Especially, the measure is based on the

past investment history of large firms, which are mostly listed and subject

to financial reporting regulations. Therefore, the index can be measured in a

timely manner and can contribute to predicting the near future of aggregate

investment. This feature is starkly contrasted with the existing indices in the

literature based on the joint distribution between capital stock and produc-

tivity that is not directly observable (Caballero and Engel, 1993; Bachmann

et al., 2013; Baley and Blanco, 2021).

Figure 5: Time series of fragility indices in simulation and data
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Notes: Using the histogram method in Young (2010), firms are simulated for 1,000 periods
(years) based on the dynamic stochastic general equilibrium allocations. Panel (a) plots a
part of the simulated allocations. The solid line plots the aggregate investment growth rate
(%). The dotted line plots the fragility indices normalized by the standard deviation. The
fragility indices are calculated based on the distribution of large firms.

Figure 5 shows the time series of fragility index and spike ratio in the

simulation (panel (a)) and the data (panel (b)), where each series is normalized

by the standard deviation around the average. In both panels, the time series of

the spike ratio leads the fragility index by two to three years. As the average
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inaction takes around six years, around three years after a surge of lumpy

investment (spike ratio), a trough is expected to arrive. By the definition of

the fragility index, during this trough of lumpy investment, the index will rise,

indicating only a small fraction of firms are willing to make a lumpy investment.

Therefore, the growth rate of the spike ratio and the fragility index tend to

co-move in the opposite direction. Figure 6 is the scatter plot of the simulated

time series where the horizontal axis is the fragility index normalized by the

standard deviation, and the vertical axis is the growth rate of the large firms’

spike ratio.16 By fitting the relationship between the fragility and the growth

rate of spike ratio into linear regression, I find the following relationship:

∆log(SpikeRatiot)(%) =− 1.8936 ∗ Fragilityt (s.d.) + ϵt, R2 = 0.828

(0.0274)

The relationship indicates that one standard deviation increase in fragility is

negatively associated with the growth rate of the large firms’ spike ratio by

1.89%. As can be seen from the high R2, these two variables are tightly related

along the business cycle. While the growth rate of the large firms’ spike ratio

is not known before period t, the fragility index is known ahead of period

t. Therefore, the fragility index has predictability for the one-period-ahead

growth rate of the large firms’ spike ratio.

Then, I study how the fragility index fluctuations affect the sensitivity

of aggregate investment growth to the output shock. Table 3 reports the

regression result of the following specification in both the model and the data

separately for negative and positive output shocks:

16The past aggregate shock At−1 and the contemporaneous shock At are controlled by
taking out fixed effects. The different colors of the dots are for different combinations of
At−1 and At.
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Figure 6: Fragility index and the growth rate of the large firms’ spike ratio
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Notes: The vertical axis of the scatter plot is the spike ratio in percentage devia-
tion from the average, and the horizontal axis is the fragility index in the standard
deviation from the average. Using the histogram method in Young (2010), firms
are simulated for 1,000 periods (years) based on the dynamic stochastic general
equilibrium allocations. The fragility indices are calculated based on the distribu-
tion of large firms.

∆log(It) = α + βShockOutputShockt + βFragilityOutputShockt × Fragilityt + ϵt

where ∆log(It) is the aggregate investment growth rate. OutputShockt is

a shock in the log output, obtained from the residuals in the AR(1) fitting

of the log output time series. The aggregate investment and output data

are from National Income and Product Accounts data. In this specification,

OutputShockt exogenously arrives at t, while the Fragilityt is determined at

t− 1. Therefore, two variables are independent of each other.17

In Table 3, the coefficient estimates from the model and data are statisti-

cally indifferent, while each coefficient itself is statistically significant. When

the fragility index increases by one standard deviation, the aggregate invest-

ment growth rate additionally decreases by 1.8% and 2.4% for one-standard

17The measurement of output shock is subject to an endogeneity issue which will be
discussed below. The independence holds only when the exogenous output shock is properly
measured.
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Table 3: State-dependent sensitivity of the aggregate investment growth

Dependent variable: ∆log(It) (p.p.)

(−) OutputShockt (+) OutputShockt

Model Data Model Data

OutputShockt (s.d.) 9.218 5.818 8.928 6.937
(0.145) (1.338) (0.141) (1.221)

OutputShockt × Fragilityt (s.d.) 1.753 2.430 -1.861 -1.486
(0.094) (1.311) (0.103) (0.495)

Constant Yes Yes Yes Yes
Observations 507 16 494 18
R2 0.904 0.790 0.900 0.705
Adjusted R2 0.903 0.755 0.900 0.663

Notes: The dependent variable is the growth rate of aggregate investment. The independent
variables are output shocks obtained from fitting output series into AR(1) process and the
interaction between the output shock and the fragility index. The fragility index is based
on the years from the last lumpy investment of large firms. The first two columns report
the regression coefficients from the simulated data and Compustat data when the negative
output shock hits. The third and fourth columns report the regression coefficients when the
positive output shock hits. The numbers in the brackets are standard errors.

deviation negative output shock in the model and the data. In contrast, the

aggregate investment growth rate increases less by 1.9% and 1.5% for one-

standard deviation positive output shock in the model and the data when

the fragility index increases by one standard deviation. The amplifying effect

of the negative output shock and the mitigating effect of the positive output

shock under the high fragility state are all due to the missing lumpy invest-

ments of large firms. That is, after a surge of lumpy investments of large firms,

the negative shock leads to a deeper drop in the aggregate investment, and the

positive shock leads to only a mitigated increase in the aggregate investment.

In Table C.6, I report the full regression results under different specifi-

cations. When the output shock is the only independent variable in the re-

gression, around 73% and 52% of the investment growth rate variations are
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explained, respectively, for negative and positive shocks in the data. Once the

fragility fluctuation is considered, R2’s improve to 79% and 71%.

Using the estimate from the data in Table 3, I quantify the portion of

the investment growth rate that is accounted for by the interaction between

the output shock and the fragility index. Specifically, the fragility-adjusted

investment growth rate gadj,It is obtained as follows:

gadj,It = ∆log(It)− β̂FragilityOutputShockt × Fragilityt.

Figure 7: Fragility-adjusted investment growth
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Notes: The solid line is the aggregate investment growth rate from NIPA. The dashed line
is the fragility-adjusted investment growth. The dotted line is the average level of the
aggregate investment growth rate.

Figure 7 plots the time series of the raw aggregate investment growth rate

(solid line) and the fragility-adjusted investment growth rate (dashed line).

After the adjustment, the investment drops during the three recessions are

mitigated. Table 4 compares the deviations from the average level for the raw

and the fragility-adjusted investment growth rates in the recent three reces-

sions of the sample period. Around 23% of the deviation from the average level
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is accounted for by the fragility effect during the recession. When the standard

deviations of each time series are compared, around 30% of aggregate invest-

ment volatility can be explained by the interaction effect (0.30 ≊ 0.018/0.060).

Table 4: Investment growth rates during the recessions

Distance between investment growth rate and average: ∆log(It) (p.p)

Raw data (NIPA) Without fragility Adjusted portion (%)

Recession-1991 -8.019 -6.239 22.197
Recession-2001 -7.695 -5.852 23.951
Recession-2009 -23.112 -17.847 22.780

Notes: The first column reports the investment growth rate (%) at recession years of 1991,
2001, and 2009 minus the average investment growth (≊ 4.5%). The second column reports
the adjusted investment growth rate after removing the predicted component from the
fragility indices using the coefficients of Table 3. The third column reports the adjusted
portion (%).

However, the results above are only partially satisfactory due to an endo-

geneity issue. Specifically, the measured output shock is not fully exogenous

because the fragility dynamics affects the future output realization. For exam-

ple, a high fragility lowers the future capital stock, leading to a lower output.

However, the current measurement of the output shock makes the fragility-

driven output drop loaded on the shock magnitude.18 This problem is hard to

solve in a reduced-form approach due to the nonlinear dynamics of the fragility

index.

To sharply quantify the extra variation of aggregate investment driven by

the fragility fluctuations without the endogeneity problem, I utilize the sim-

ulated path of the equilibrium allocations. Specifically, I hit the economy at

each period on the simulated path with an unexpected one-standard-deviation

TFP shock and compute the contemporaneous response under the general

18Therefore, it is likely that the role of the fragility index is underestimated.
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equilibrium. Each period on the simulated path features a different fragility

index level while the TFP shock’s magnitude is fixed. Therefore, this experi-

ment provides a setup to investigate the relationship between the investment

response variations and the fragility index fluctuations.

Figure 8 shows the state-dependent contemporaneous responses of aggre-

gate investment growth rates.19 The horizontal axis is the fragility index nor-

malized by the standard deviation. The vertical axis is the deviation of the

aggregate investment growth from the average in percentage point. The prior

aggregate shock At−1 is controlled by teasing out the fixed effect.20

Figure 8: State-dependent responses of aggregate investment growth
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Notes: The vertical axis of the scatter plot is the instantaneous response of the
aggregate investment growth to a negative one-standard-deviation TFP shock in
percentage point, and the horizontal axis is the fragility index measured in the unit
of standard deviation from the average. In each responses, contemporaneous and
one-period-prior aggregate TFP fixed effects are controlled. Using the histogram
method in Young (2010), firms are simulated for 1,000 periods (years) based on
the dynamic stochastic general equilibrium allocations. The fragility indices are
calculated based on the distribution of large firms.

As can be seen from the figure, there is a significant negative relationship

between the contemporaneous response of the aggregate investment growth

19Figure 2 can be understood as a data counterpart of this figure, as the residualized
investment variation increases in the average of the recent spike ratio of large firms.

20The different colors of dots represent the different fixed-effect groups.
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rate ∆log(It) and the fragility index. By fitting the relationship into linear

regression, I obtain the following result:

∆log(It) (p.p.) =− 3.2022 ∗ Fragilityt (s.d.) + ϵt, R2 = 0.699

(0.0665)

When the fragility index increases by one standard deviation, a contemporane-

ous response of the aggregate investment growth to the negative one-standard-

deviation shock is mitigated by 3.2 percentage points. During the recessions

in 1991 and 2001, the aggregate investment growth rate was around -3.5% and

-3.2%. If the magnitude of the negative output shocks during these periods

was beyond a single standard deviation, the drop in the investment growth

would not have been sub-zero during these periods if it had not been for the

fragility effect.

Lastly, I study how the fragility effect affects the output through the firm-

level investment channel. Taking the same steps as above, I analyze how the

instantaneous response of the output changes along with the fragility variation:

log(Yt) (p.p.) =− 0.6111 ∗ Fragilityt (s.d.) + ϵt, R2 = 0.651

(0.0142)

When the fragility increases by one standard deviation, the output drops by

0.6 percentage points further to the same negative aggregate TFP shock of a

one-standard-deviation magnitude.21

21The scatter plot of the output responses and the fragility variations is available in
Appendix E.
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4.4 Policy implication: State-dependent interest-elasticity

of aggregate investment

In this section, I discuss the policy implications of the fluctuations of the

fragility index over the business cycle. In the economy captured in the baseline

model, the aggregate investment features a strong history dependence.22 This

history dependence not only affects the aggregate investment’s response to the

TFP shock but affects its elasticity to the interest rate change.

Figure 9: State-dependent semi-elasticities of aggregate investment
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Notes: The vertical axis of the scatter plot is the semi-elasticity of aggregate in-
vestment in percentage point deviation from the average, and the horizontal axis is
the fragility index in the standard deviation from the average. For each elasticity,
contemporaneous and one-period-prior aggregate TFP fixed effects are controlled.
Using the histogram method in Young (2010), firms are simulated for 1,000 peri-
ods (years) based on the dynamic stochastic general equilibrium allocations. The
fragility indices are calculated based on the distribution of large firms.

To study how the aggregate investment responds differently to the same

interest shock depending on the fragility state, I hit the economy at each

period on the simulated path with an unexpected interest rate shock and

compute the contemporaneous response under the partial equilibrium.23 In

22Given that the aggregate state includes all the relevant information from history, the
state dependence and the history dependence are interchangeable in the model.

23Therefore, the analysis is measuring the semi-elasticity of investment at each timing on
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particular, I compare the contemporaneous average change in the investment

when the interest rate unexpectedly changes and returns immediately in the

subsequent period to the level where the interest is supposed to be without the

exogenous shock. And the benchmark investment level is the contemporaneous

investment when the interest rate is assumed to be staying at the same level.

I calculate the average between the elasticity measured when the interest rate

increases by 1% and the one measured when the interest rate drops by 1% to

address the asymmetry in the responses to the positive and negative interest

rate shocks.24

Figure 9 is the scatter plot of the interest-elasticities of the aggregate in-

vestment in relation to the fragility state. The horizontal axis is the fragility

index normalized by the standard deviation; the vertical axis is the interest-

elasticity in percentage point deviation from the steady-state.25 According to

the figure, there is a significant negative relationship between the fragility and

the interest-elasticity of aggregate investment. By fitting the relationship into

linear regression, I obtain the following result:

∆Elasticityt (p.p) =− 0.2689 ∗ Fragilityt (s.d) + ϵt, R2 = 0.497

(0.0086)

One standard deviation increase in the fragility index decreases the interest

elasticity of aggregate investment by around 0.27 percentage points. The in-

the business cycle.
24For example, if the interest is 0.03 at period t, I first compute the firm-level investment

in the following three cases: i) when the interest rate jumps up to 0.04 only in period t and
then stays in 0.03; ii) when the interest rate drops down to 0.02 only in period t and then
stays in 0.03; iii) when the interest rate stays at 0.03 forever. Then, I obtain the average
between the investment difference between case iii) and case i) and the investment difference
between case iii) and case ii).

25The prior aggregate shock At−1 is controlled by teasing out the fixed effect, and the
different colors of dots represent the different fixed-effect groups.
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tuitive explanation for the result is that when the fragility index is high, there

are not many large firms that can flexibly participate in and out of large-scale

investment. This decreases the interest-elasticity of aggregate investment in a

high-fragility state.

To verify that large firms drive interest elasticity fluctuations in aggregate

investment, I compute the interest elasticity variations separately for the in-

vestment of large and small firms. Figure 10 is the scatter plot of interest

elasticities along with the fragility variation for large (panel (a)) and small

firms (panel (b)). The negative relationship between the fragility index and

the elasticity is significantly stronger in large firms. When two different elas-

ticities are fitted into linear regression, the following relationship is obtained:

∆ElasticityLarget (p.p) =− 0.3992 ∗ Fragilityt (s.d) + ϵt, R2 = 0.484

(0.0130)

∆ElasticitySmall
t (p.p) =− 0.1403 ∗ Fragilityt (s.d) + ϵt, R2 = 0.569

(0.0039)

When the fragility index increases by one standard deviation, large firms’

investment elasticity decreases by around 0.40 percentage points. On the other

hand, the same variation in the fragility index decreases small firms’ elastic-

ity by 0.14 percentage points, and the difference is statistically significant.

The time-series correlation between the elasticities of the aggregate invest-

ment and the large firms’ elasticities is 0.99. This result shows that large

firms dominantly drive the stark negative relationship between the average

interest elasticities (of all firms) and the fragility index. Although large firms

are interest-inelastic, the time-series variation in their interest elasticities is
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Figure 10: State-dependent semi-elasticities of investments: Decomposition
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(a) Large firms
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(b) Small firms

Notes: The vertical axis of the scatter plots is the semi-elasticity of large (panel
(a)) and small (panel (b)) firms’ investment in percentage point deviation from
the average, and the horizontal axis is the fragility index in the standard devia-
tion from the average. For each elasticity, contemporaneous and one-period-prior
aggregate TFP fixed effects are controlled. Using the histogram method in Young
(2010), firms are simulated for 1,000 periods (years) based on the dynamic stochas-
tic general equilibrium allocations. The fragility indices are calculated based on
the distribution of large firms.

greater than those of small firms. This is because large firms’ responses are

highly state-dependent, while small firms are flexible to adjust at all times due

to their small fixed adjustment cost.

The analysis above implicitly shows that if the fragility index is high, the

monetary policy would not effectively operate through the firm-level invest-

ment channel. Given there were recessions in the recent periods that hap-

pened in the time of high fragility, the policy implication echoes Tenreyro and

Thwaites (2016) that conventional monetary policies are less powerful during

recessions especially through the business investment channels. Moreover, this

paper adds to the findings by providing an endogenous mechanism of state de-

pendence in monetary policy effectiveness. Importantly, the fragility index is a

forward-looking variable and can be easily measured using readily observable

large firms’ data. Therefore, the fragility index can potentially contribute to

the optimal monetary policy design in practice.
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5 Concluding remarks

This paper analyzes the endogenous state dependence in the aggregate in-

vestment dynamics driven by synchronized firm-level lumpy investments. An

economy becomes substantially more fragile to a negative aggregate shock af-

ter a surge of large firms’ lumpy investments than it would otherwise be. I

show this is due to the interest inelasticity of the large firms’ investments,

which generates persistently synchronized investment timings even under the

general equilibrium. The economic significance of this channel is quantified

in a heterogeneous-firm real business cycle model in which the cross-section

of the semi-elasticities of firm-level investment is matched with the empirical

estimates. In the model, the aggregate investment features a significant state

dependence in the interest elasticities driven by fragility index fluctuations.

This implies that after a surge of large firms’ lumpy investments, the effec-

tiveness of monetary policy can substantially fall due to the lowered interest

elasticity of the aggregate investment.
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