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This paper

Research question

How can we solve the nonlinear models under the aggregate uncertainty (with heterogeneous agents)
globally and accurately?

What do we learn from the nonlinear heterogeneous-agent models?

This paper

develops a global solution framework in the sequence space.

introduces the generalized transition function (GTF ): a versatile tool for nonlinear macro analysis.

studies key nonlinear implications from heterogeneous-household business cycle models with
endogenous labor supply, irreversible investment, and portfolio choice.

- endogenous disaster/ Interaction between uncertainty and growth/ state-dependent fiscal multiplier
- heterogeneous portfolio adjustment over business cycle/ state-dependent risk premium dynamics
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Overview of the sequence-space global solution framework (RTM)

▶ solves nonlinear business cycle models accurately in the sequence space.

▶ global method, not requiring law of motion, without assuming perfect foresight.

▶ efficiently handles non-trivial market clearing conditions and occasionally binding constraints.

▶ provides theoretical foundations for the sufficient statistic approach.

▶ easy.

▶ recovers the full RCE, which immediately computes the GTF:
– enables to fully utilize the equilibrium dynamics: state dependence within a unified RCE framework.
– where are we on the path? It allows the analysis away from the steady state.
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Related papers
▶ Solution methods for the heterogeneous (representative) agent models:

– Global method: Marcet (1988); Den Haan and Marcet (1990); Den Haan (1996); Krusell and Smith (1997,1998);
Rios-Rull (1997); Den Haan and Rendahl (2010); Reiter (2010); Cao et al. (2023)

– Policy function iteration: Coleman (1990); Judd (1992); Cao et al. (2023)
– Perfect foresight: Fair and Taylor (1983); Juillard (1996); Judd (2002); Cai et al. (2017); Boppart et al. (2018); Auclert et

al. (2021)
– Approximation (fast): Reiter (2009); Childers (2018); Bayer and Luetticke (2019); Auclert et al. (2021); Gross and Hansen

(2021)
– Machine/Deep learning: Fernandez-Villaverde et al. (2021); Kahou et al. (2021); Han, Yang, and E (2022); Aznovic,

Gaegauf, and Scheidegger (2022); Kase, Melosi, and Rottner (2024)
– Simulation-based: Judd et al. (2011)

▶ Short-run equilibrium dynamics:
– Andreasen et al., (2017); Petrosky-Nadeau and Zhang (2021)
– Theoretical analysis: Cao (2020)

▶ Nonlinear business cycle models / Heterogeneous portfolio choice:
– Christiano et al. (2011); Kaplan and Violante (2014); Guerrieri and Iacoviello (2015); Petrosky-Nadeau et al. (2018);

Fernandez-Villaverde et al. (2021)
– Den Haan (1996); Krusell and Smith (1997); Heaton and Lucas (2000); Gomes and Michaelides (2007); Calvet et al.

(2009); Fagereng et al. (2017); Fagereng et al. (2017); Bayer et al. (2019); Luetticke (2021) ; Auclert et al. (2024,2025)
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A nonlinear global solution in the sequence space
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A generic model framework
We consider a problem where the recursive formulation (bounded lifetime return, SLP 1989) is as follows:

V (x ;X ) = max
y ,a′

f (y ,a′, x ;X ) + Eq(X ,X ′)V (a′, s′;X ′)

s.t. (y ,a′) ∈ B(x ;X ,X ′,m), X ′ = M(X )

[Individual state] : x = {a, s}
[Aggregate state] : X = {Φ,S}

Denote the price bundle p = (m,q). The following market clearing condition pins down the price p:

[Market clearing] : p(X ,X ′) = argp̃{QD(p̃,X ,X ′)− QS(p̃,X ,X ′) = 0},

Note: A usual household’s dynamic problem is with q(X ,X ′) = β. cf. A firm dynamic problem with SDF.

▶ For expositional clarity, I consider an exogenous Markov chain S ∈ {G,B} that evolves by ΓSS′ .
▶ Define a standard RCE with individual optimality + market clearing + consistency.
▶ Assume: unique RCE + regularity conditions in SLP (1989) and Meyn & Tweedie (1993):

(Feller property + Lyapunov drift condition + Irreducibility + Minorization) + Aperiodicity
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Sequence-space global solution method (RTM)

▶ It relies on the Recursivity of RCE: history repeats itself.
– Harris recurrence + Aperiodicity =⇒ Ergodicity.
– Ergodicity: If a simulation path is long enough, the simulation path captures all possible aggregate state

realizations, and then the realizations repeat themselves.

▶ In each period t , we need the conditional expectation:
EVt+1 = ΓSGV (·;Φt+1,G) + ΓSBV (·;Φt+1,B). Suppose St+1 = G.

▶ If the simulation path is long enough, there exists a period t̃ + 1 such that
1. Φt+1 = Φt̃+1 .
2. St̃+1 = B.

▶ We can use Vt̃+1 to fill up the missing counterfactual value function at period t + 1, V (·;Φt+1,B).

▶ The method relies on the similarity of the aggregate states across the periods and the recursive
nature of RCE: history repeats itself.
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Illustration

Solve backward

ǁ𝑡 +1

{𝑆𝑡+1 = 𝐵, Φ𝑡+1
(𝑛) }

t t+1

{𝑆𝑡+1 = 𝐺, Φ𝑡+1
(𝑛) }

𝑉ሚ𝑡+1 
(𝑛) (𝑥′; 𝐵, Φ𝑡+1

(𝑛) )

𝑉𝑡+1 
∗ (𝑥′; 𝐺, Φ𝑡+1

(𝑛) )𝐸𝑉𝑡+1(𝑥′; 𝑆𝑡+1, Φ𝑡+1
(𝑛) )

𝑛𝑡ℎ − iteration

(𝑛 + 1)𝑡ℎ− iteration ×  Π𝑆𝑡,𝐵
𝑆

×  Π𝑆𝑡,𝐺
𝑆

Figure: The computing step for conditional expectation based on the RTM

Notes: The conditional expectation in period t can be computed by
EVt+1(x ′;St+1,Φ

(n)
t+1) = ΠS

St ,B
× V (n)

t̃+1
(x ′;B,Φ

(n)
t+1) + ΠS

St ,G
× V ∗

t+1(x
′;G,Φ

(n)
t+1).
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Repeated transition method - implementation
Step 1 (Initialization) Simulate a long exogenous state path {St}T

t=0 . Conjecture {V (0)
t ,Φ

(0)
t ,p(0)

t }T
t=0

Step 2 (Backward solution) Starting from the terminal period T , solve agents’ problems backward using
expectations based on {V (n)

t }T
t=0 . For each exogenous state in t + 1:

(a) Find periods τ such that Φ
(n)
τ ≈ Φ

(n)
t+1 and collect realized state-contingent value functions.

(b) Use these values to construct expectations Et [Vt+1].
Then, obtain the optimal value function V ∗

t and the policy function ga∗
t .

Step 3 (Forward simulation) Simulate the model forward using {ga∗
t }T

t=0 to generate {Φ∗
t }T

t=0 and implied
prices {p∗

t }T
t=0 .

Step 4 (Update) Update the guessed sequences via convex combination:

V (n+1)
t = λV ∗

t + (1 − λ)V (n)
t , similarly for Φt , pt .

Step 5 (Iteration) Repeat Steps 2–4 until convergence:

sup
t

∥∥∥p(n+1)
t − p(n)

t

∥∥∥ < ε.
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A simple theory of sufficient statistics
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The theoretical ground for the sufficient statistic approach in RTM

Definition 1 (Sufficient statistics)

Consider a function e : Ω → Rn . An equilibrium object et := e(Φt ) is a sufficient statistic if for
TS = {t |St = S}, ∀S ∈ {B,G},

et = et̃ =⇒ Vt = Vt̃ , t , t̃ ∈ TS . (1)

▶ Two different sufficient statistics: state space vs. sequence space
– State space: a variable that can literally replace or summarize Φt in the price determination or in the law

of motion (Alvarez et al., 2016; Baley and Blanco, 2021).
– Sequence space: an indexing variable where the same level of the variable indicates the periods with the

same aggregate state.

argmin
t

||et − et̃ || = argmin
t

||Φt − Φt̃ ||, (2)

▶ In the end, RHS is not too costly.
▶ When can we take LHS?
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Monotonicity condition

Proposition 1 (The monotonicity condition for a univariate sufficient statistic)

For each time partition TS = {t |St = S}, S ∈ {B,G}, if et is strictly monotone in Vt for ∀t ∈ TS and
all individual states (a, s), then, et is a sufficient statistic.

▶ If et conditionally ranks the value functions, it’s a sufficient statistic.
– the ranking information = the target period’s location

▶ A natural candidate for et : the first moment (a necessary condition for the similarity).

▶ The monotonicity is tested using the Spearman’s coefficient.

▶ Proposition 1 can be extended to a multivariate sufficient statistic based on the monotonicity within
the partitioned state space. extension
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Taming curse of dimensionality

Why is the RTM particularly efficient for taming curse of dimensionality?

[Aggregate state] : X = {Φ,S} (3)

▶ State space: As X ’s dimensionality increases, the value function V and policy function ga needs to
accommodate a greater dimensions.

▶ Sequence space: As X ’s dimensionality increases, the value function V and policy function ga’s
dimensions do not need to increase. It’s just labeled by time index t : No curse of dimensionality.

Thus, the model can be flexibly solved based on different bounded rationality setup: compare the
similarity based on a few sufficient statistics vs. full distribution.
▶ It can systematically test the existence of the “self-fulfilling multiple equilibria” (Krusell and Smith,

2006; Cozzi, 2015).
▶ I’ve found no evidence for the model of Krusell and Smith (1998).
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Non-trivial market clearing conditions in RTM
(subject to time constraint)
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Non-trivial market clearing conditions

Another computational hurdle in the literature: “non-trivial market clearing conditions.”
Let’s revisit the market clearing condition:

QD(pt ,Xt ,Xt+1)− QS(pt ,Xt ,Xt+1) = 0.

pt := argp̃{QD(p̃,Xt ,Xt+1)− QS(p̃,Xt ,Xt+1) = 0}.

where QD and QS are demand and supply functions; pt is the market clearing price; Xt and Xt+1 are
the current and future aggregate states. (dependence on Xt+1 is optional.)

▶ why? non-trivial aggregation of demand or supply functions (or both) leads to non-invertibility.
▶ how to handle? an internal loop to clear the market in each period to get p∗

t .
- a significant computational bottle neck. What if two or three non-trivial markets?
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RTM efficiently handles the non-trivial market clearing conditon
▶ The RTM utilizes the implied price p∗

t instead of pt , where

p∗
t := argp̃{QD(p(n)

t ,Xt ,Xt+1)− QS(p̃,Xt ,Xt+1) = 0} or

:= argp̃{QD(p̃,Xt ,Xt+1)− QS(p(n)
t ,Xt ,Xt+1) = 0}.

▶ Note that this is NOT a fixed-point problem: the market is not cleared.
▶ However, as iteration goes by with the gradual updates, the predicted path of prices {p(n)

t }T
t=0

converges to the equilibrium prices {pt}T
t=0.

lim
n→∞

QD(p(n)
t ,Xt ,Xt+1)− QS(p∗

t ,Xt ,Xt+1) = 0

=⇒ QD( lim
n→∞

p(n)
t ,Xt ,Xt+1)− QS(p∗

t ,Xt ,Xt+1) = 0

=⇒ QD(pt ,Xt ,Xt+1)− QS(p∗
t ,Xt ,Xt+1) = 0

=⇒ pt = p∗
t (∵ uniqueness of the equilibrium).
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The Generalized Transition Function (GTF)
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The generalized transition function (GTF)
The RCE offers a powerful conceptual framework, but it has traditionally been difficult to leverage this
object. How can we fully utilize the RCE?

Definition 2 (Generalized transition function)

Given an aggregate state realization (Φ0,S0) in the RCE, the generalized transition function g of the
variable of interest v as follows:

g(v ;Φ0,S0) =
∫

v(x ;Φj ,Sj )dΦj , Sj ∼ Γj (Sj ;S0), j ≥ 1 (4)

where Sj is a random variable of the exogenous aggregate state, which follows a j-length Markov chain
Γj from the initial realization of S0.

▶ The global solution already includes all the possible GTFs: the computation is immediate.
▶ The GTF nests GIRF (Koop et al., 1996; Andreasen et al., 2017) and stochastic growth path

(Justiniano and Primiceri, 2008; Hansen et al., 2008). GIRF

▶ An extended version-Φ0 not belonging to RCE: Equilibrium exists (Cao, 2020). I assume an
immediate jump to the nearest ΦRCE , like required by Ramsey-Kass-Coopmans model’s TVC.
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What do we learn from the nonlinear heterogeneous-agent models?

- Leading applications
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leading applications

Households
Heterogeneous households consume, save, and endogenously supply labor.

(i) The irreversible investment constraint is occasionally binding: Illiquid nature.

Krusell and Smith (1998) extended by endogenous labor supply
+ Guerrieri and Iacoviello (2015)
+ Multiple aggregate shocks (TFP & Government demand)

(ii) Households form portfolios between risky and riskless assets over the business cycle.

Krusell and Smith (1997) extended by endogenous labor supply

Firm
A production sector operates using a CRS Cobb-Douglas production function.

Competitive market
A non-trivial labor and bond market clearing conditions
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Recursive formulation
▶ A heterogeneous household model’s recursive form:

V (x ;X ) = max
c,n,x ′

log(c)− η

1 + 1
χ

n1+ 1
χ + βEV (x ′;X ′) (5)

s.t. (c,n, x ′) ∈ B(x ;X ,X ′,m) (6)
Φ′ = ΓX (X ) (Aggregate law of motion)
S′ ∼ π(S′|S), z ′ ∼ π(z ′|z)

(Application I) x = [a, z], X = [Φ,A,G] (7)
c + a′ = (1 + r (X ))a + w(X )zn − T (X ) (8)
a′ − (1 − δ)a ≥ ϕIss (9)

(Application II) x = [a,b, z], X = [Φ,A] (10)

c + a′ + qb(X )b′ = (1 + r (X ))a + b + w(X )zn (11)
a′ ≥ 0, b′ ≥ b (12)
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App. I - Endogenous disaster
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(a) Output
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Figure: State-dependent responsiveness: high vs low hand-to-mouth portion

Notes: Panel (a) plots the generalized impulse response functions (GIRF) of output when the aggregate states before the shock hits
were with a high portion hand-to-mouth households (solid line) and with a low portion of hand-to-mouth households (dashed line).
Panel (b) plots the GIRFs of consumption. The shaded areas indicate the 95% confidence interval.
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App. I - Uncertainty-driven dampened growth
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Figure: Stochastic growth path vs. perfect-foresight growth path

Notes: The figure plots the GTF-based stochastic growth path (solid line) in comparison with the perfect-foresight growth path
(dashed line). The shaded areas indicate the 95% confidence interval. The transition is initiated from the steady state of an economy
with a 5% lower aggregate TFP productivity.
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App. I - State-dependent fiscal multiplier

Yt = β0 + β1Gt + β2Gt × Λt + β3log(Kt ) + β3log(At ) + ϵt

Table: State-dependent fiscal spending multipliers

Dependent variable: Yt ($)
Hetero. (HH) Rep. (RH) GHH

Gt ($) 0.402 0.182 0.206 0.000
(0.005) (0.002) (0.000) (0.001)

Gt ($)× Λt 0.533 0.534 0.000
(0.003) (0.002) (0.000)

Constant Yes Yes Yes Yes
Observations 3,000 3,000 3,000 3,000
R2 0.992 0.999 0.999 0.999
Adjusted R2 0.992 0.999 0.999 0.999

Notes: The table reports the regression results based on the specification above. The first two columns are results based
on the heterogeneous household baseline model. The next column is based on the representative-household counterpart.
The last column is based on the representative household model with GHH utility, where the wealth effect is muted.
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App. II - Nonlinear equilibrium bond dynamics
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Figure: The equilibrium bond price path

Notes: The figure plots the time series of the bond price qb
t in the extended model of Krusell and Smith (1997). The

solid line is the predicted bond price (nth guess) {qb(n)
t }800

t=500 . The dashed line is the implied bond price {qb∗
t }800

t=500 .
The dotted line is the bond price predicted by the linear law of motion.
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App. II - Heterogeneous portfolio adjustment group-level
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Figure: The time series of average risky asset portion across different wealth groups

Notes: The figure plots the time series of the risky asset portion (%) in the wealth portfolio for different households in the extended
model of Krusell and Smith (1997). The solid line represents households in the top wealth tercile, while the dashed and the dash-
dotted lines show households in the bottom wealth tercile and the remaining middle class. The dotted line depicts output (measured
as percentage deviation from steady state), with values shown on the secondary vertical axis at the right side of the figure.
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App. II - State-dependent risk premium dynamics
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(a) Negative TFP shock

0 2 4 6 8 10 12
Time (quarters)

-2

-1

0

1

2

3

4

5

 r
is

k 
pr

em
iu

m
 (

%
)

high risk pf.
low risk pf.

(b) Positive TFP shock

Figure: State-dependent risk premium dynamics

Notes: The figure plots the GTFs of the risk premium for a negative (panel (a)) and positive (panel (b)) 2% TFP shocks. The solid
line represents the economy with the highest portion of risky asset before the shock hits and the dashed line does it for the economy
with the lowest portion of risky asset.
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Other applications with sample codes
▶ Sample codes for 20+ models are available, and more are coming soon.

Representative-agent RBC models
– Representative RBC models with adjustment costs, asset price, Frisch-driven labor supply, etc.

Heterogenenos-agent RBC models
– Krusell and Smith (1997;1998) and its variants
– Khan and Thomas (2008) and its variants
– Heterogeneous-agent RBC models with firm-level frictions
– Uncertainty shocks

SaM models
– A canonical DMP model with exogenous separation
– [Coming soon] A DMP model with endogenous separation (joint with Francesco Zanetti and Philip

Schnattinger)

NK models
– A canonical NK model with three shocks (Rotemberg)
– [Coming soon] A canonical NK model with ZLB (joint with Kao Nomura)
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Conclusion
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Conclusion

▶ The global nonlinear solution in the sequence space efficiently solves DSGE models accurately
utilizing RCE’s recursivity, uniqueness, and stability.

▶ It proposes an effective way of taming curse of dimensionality.

▶ The GTF enables to fully utilize powerful equilibrium framework RCE.

▶ The global nonlinear solution framework reveals novel nonlinear implications:
– Endogenous disaster
– Interaction between uncertainty and growth
– State-dependent fiscal multiplier and risk premium dynamics
– Heterogeneous portfolio adjustment over the business cycle
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Appendix
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Why does nonlinearity matter? back

“What drives the business cycles?”

Define the aggregate state S := (Φ,A), where Φ is endogenous, and A is exogenous. Suppose the
variable of interest is X = X (Φ,A).

▶ State dependence

∂X
∂A

= G(Φ,A)

▶ Nonlinear propagation

∂X
∂A

= G(Φ,A)
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An RBC model with investment irreversibility back

The representative household solves the following problem:

V (a;S) = max
c,a′

c1−σ

1 − σ
+ βEV (a′;S′)

s.t. c + a′ − (1 − δ)a = Aaα

a′ − (1 − δ)a ≥ ϕIss

where Iss is the steady-state investment level. The aggregate state S is as follows

S = [K ,A].

K is the aggregate capital stock. A is TFP that follows the log AR(1) process:

log(A′) = ρlog(A) + σϵ, σ ∼ N(0,1).

c is consumption, a is the wealth in the beginning of a period. ϕ is the parameter that governs the
degree of the irreversibility.
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Recursive formulations back

Each firm with an individual state (k , z) solves the following problem:

J(k , z;X ) = max
k ′

π(k , z;X ) + (1 − δ)k − k ′ + Ez,X M(X ,X ′)J(k ′, z ′;X ′)

s.t. k ′ ≥ ϕIss + (1 − δ)k
π(k , z;X ) = max

k ,n
Akαnγ − w(X )n

where k is individual capital stock; z is the idiosyncratic productivity; n is the labor demand; Iss is the
steady-state aggregate investment level.
The household-side problem is as follows:

V (a;X ) = max
c,a′,N

log(c)− ηN + βEV (a′;X ′)

s.t. c +
∫

a′(X ′)q(X ,X ′)d ΓX ′ = a + w(X )N

where q is the stochastic discount factor; a′ is the future equity portfolio.
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Comparison
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Comparison with other methods I model

▶ The model is a representative-agent RBC model with irreversible investment (occ. bin. const.).

RTM GDSGE OccBin Linear

Accuracy
max(|Errort |) (% of steady-state K ) 0.003 0.735 1.317 2.019√

mean(Error2
t ) (% of steady-state K ) 0.001 0.025 0.217 0.559

max(|EEt |) (% of contemp. Ct ) 0.014 0.057 2.854 2.323√
mean(EE2

t ) (% of contemp. Ct ) 0.002 0.059 0.775 0.707

Business cycle stat.
mean(I) 0.363 0.363 0.365 0.363
mean(C) 1.166 1.166 1.164 1.160
vol(I) 0.022 0.022 0.023 0.023
vol(C) 0.052 0.052 0.052 0.052
skewness(I) 1.363 1.320 1.307 1.407
skewness(C) -0.225 -0.213 -0.322 -0.095
kurtosis(I) 4.447 4.578 4.513 4.255
kurtosis(C) 2.776 2.546 2.858 2.796
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Comparison with other methods II
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(a) Krusell and Smith (1998): Kt
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(b) Khan and Thomas (2008): Kt
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(c) Khan and Thomas (2008): pt (= 1/Ct )

Figure: Dynamically consistent equilibrium dynamics in heterogeneous-agent models

▶ The accuracy is the same as the log-linear state-space approach. (R2 = 0.9999)
▶ For Khan and Thomas (2008), the speed gain at the non-trivial market clearing condition is

substantial: more than 10 times faster.
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Extensions (vector) and Clustering back

What if an aggregate shock is relevant for a part of the economy? or differently relevant?
– e.g., Tariffs. Energy-saving technologies.

Let X denote the set of all individual states x = (a, s), and let {Pj}n
j=1 be a cross-sectional partition of

X such that ∪Pj = X and Pj ’s are pairwise disjoint.

Proposition 2 (The qualification for the multivariate sufficient statistic)

For each time partition TS = {t |St = S} S ∈ {B,G} and for cross-sectional partition Pj ,
j ∈ {1,2, . . . ,n}, if ej

t is strictly monotone in Vt for ∀t ∈ TS and ∀(a, s) ∈ P j
t , then,

et = (ej
t )

n
j=1 ∈ Rn is a sufficient statistic.

▶ In the end, the RTM is about clustering periods with similar aggregate states.
▶ Sequence space can efficiently tame curse of dimensionality
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Nonlinear aggregate capital dynamics
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(a) Baseline
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(b) Hetero vs. Rep.
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Figure: Equilibrium capital dynamics
(a): The solution is dynamically consistent while significantly deviates from log-linear LoM.
(b): Both hetero. and rep. models are differently nonlinear.

– Hetero. model features a greater volatility and a greater skewness.
(c): When the occ. bin. constraint is lifted, the perfect log-linear representation holds.
▶ The fiscal spending multiplier is state-dependent: nonlinear MPC channel
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GTF - GIRF back

Definition 3 (A refined generalized impulse response function)

Given an aggregate state realization (Φ0,S0) in the RCE, the refined generalized impulse response ggirf

of the variable of interest v to an exogenous state realization S1 in the following period is as follows:

ggirf (v ;Φ0,S0,S1,1) =
∫

v(x ;Φ1,S1)dΦ1 (13)

ggirf (v ;Φ0,S0,S1, j) =
∫

v(x ;Φj ,Sj )dΦj , Sj ∼ Γj (Sj ;S1), j > 1 (14)

where Sj is a random variable of the exogenous aggregate state, which follows a j-length Markov chain
from the initial realization of S1.

▶ Notably, G := {g1,g2, . . . } is a sub-path of the RCE, where gj is a GTF for S1.
▶ The first component of the ggirf is deterministic upon the impact of the aggregate shock, as the

magnitude of the shock |S1 − S0| is set by a researcher from choosing S1.
▶ The average path with the 95% CIs can be characterized based on simulated shock paths.
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Monotonicity
▶ Despite the nonlinearity, the strict monotonicity still holds: Kt qualifies as a sufficient statistic.

– Vertical axes: expected policy functions, horizontal axes: Kt .
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– A similar monotonicity holds for models with two endogenous aggregate states.
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Bond market clearing - a dummy variable trick
The bond market presents a unique computational challenge:

x
▶ The clearing condition reduces to a non-invertible identity:

qb(X )× B′(X ) = B ⇐⇒ qb(X )× 0 = 0.

▶ It becomes clear from the national accounting identity:

C(X ) + K ′(X ) + qb(X )B′(X ) = K (1 + r (X )) + B + w(X )N (15)

⇐⇒ C(X ) + I(X ) + qb(X )B′ − B = Y (X ) (16)

=⇒ qb(X )B′ = B ⇐⇒ qb(X )× 0 = 0, (17)

▶ I introduce a dummy bond variable trick to handle this problem:

qb∗
t B := Y (n)

t − C∗
t − I∗t + B∗

t − qb(n)
t B =⇒ qb∗

t =
Y (n)

t − C∗
t − I∗t + B∗

t − qb(n)
t B

B
, (18)
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Heterogeneous portfolio adjustment - group level back
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(a) Risky asset dynamics

500 550 600 650 700 750 800

-2

0

2

4

R
is

k-
fr

ee
 a

ss
et

 (
$)

-2

-1

0

1

2

 lo
g(

Y
) 

(%
)

Wealth rich
Middlde class
Wealth poor
Output

(b) Risk-free asset dynamics

Figure: Risky and risk-free asset holding dynamics across different wealth groups

Notes: The figure plots the time series of the different asset holdings ($) by household types in the extended model of Krusell and
Smith (1997). Panel (a) is for the risky asset, and panel (b) is for the risk-free asset. The solid line represents households in the
top productivity tercile, while the dashed line shows households in the bottom productivity tercile. The dotted line depicts output
(measured as percentage deviation from steady state), with values shown on the secondary vertical axis at the right side of the figure.
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DMP models and NK models
(subject to time constraint)
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The key inter-termporal equations
The key inter-temporal optimality conditions are as follows:

▶ [DMP] The vacancy posting decision:

κ

q(S)
= (1 − λ)βE

[(
c(S)

c(S′)

)σ (
z ′ − w(S′) +

κ

q(S′)

)]

▶ [NK-Rotemberg] The price adjustment decision (NKPC):

ϵ − 1

= ϵmc(S)− ψ(1 + π(S))(π(S)− π) + βψE

[(
c(S)

c(S′)

)σ

(1 + π(S′))(π(S′)− π)
Y (S′)

Y (S)

]

▶ The RTM sharply computes the conditional expectations.
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