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A Implementation of the repeated transition method

A.1 Implementation

The method starts from simulating a single path of exogenous aggregate shocks for a long-enough

period T , S = {St}Tt=0, using the aggregate transition matrix ΠS . A time partition T (S) is defined

as group of periods that share the same aggregate exogenous state realization as follows.

TS := {τ |Sτ = S} ⊆ {0, 1, 2, ..., T} for S ∈ {B,G}.

The pseudo algorithm of the RTM is as follows:

Step 1. Guess on the paths of the value functions, the endogenous states, and the prices:2

{V (n)
t ,Φ

(n)
t , p

(n)
t }Tt=0.

Step 2. Solve the model backward from the terminal period T in the following sub-steps. The expla-

nation is based on an arbitrary period t. For an illustrative purpose, I assume St = G and

St+1 = G:

2-a. Find t̃+1 where the endogenous aggregate allocation in period is identical to the one in

period t+ 1, but the shock realization is different from period t+ 1 (St̃+1 = B):3

t̃+ 1 = arg inf
τ∈TB

||Φ(n)
τ − Φ

(n)
t+1||∞.

2-b. Compute the expected future value function as follows:

EtṼt+1 = πG,GV
(n)
t+1 + πG,BV

(n)

t̃+1
.

2-c. Using EtṼt+1 and p
(n)
t , solve the individual agent’s problem at the period t. Then, I

obtain the solution {V ∗
t , a

∗
t+1}.

After the taking these sub-steps for ∀t, {V ∗
t , a

∗
t+1}Tt=0 are available.

2In practice, I use the stationary equilibrium allocations for all periods as the initial guess.
3Such t̃+ 1 might not be unique. However, any of such t̃+ 1 is equally good to be used in the next step.
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Step 3. Using {a∗t+1}Tt=0, simulate forward the time series of the endogenous states {Φ∗
t }Tt=0 starting

from Φ∗
0 = Φ

(n)
0 .4

Step 4. Using {Φ∗
t }Tt=0, all the aggregate allocations over the whole path such as {K∗

t }Tt=0 can be

obtained. Using the market-clearing condition, compute the time series of the market-clearing

price. If the model features a non-trivial market clearing condition, compute the time series

of the implied prices {p∗t }Tt=0.
5

Step 5. Check the distance between the implied prices and the guessed prices.

sup
BurnIn≤t≤T−BurnIn

||p∗t − p
(n)
t ||∞ < tol

Note that the distance is measured after excluding the burn-in periods at the beginning

and the end of the simulated path. This is an adjustment to handle a potential bias from

the imperfect guesses on the terminal period’s value function V
(n)
T and the initial period’s

endogenous state Φ
(n)
0 . The convergence criterion can be augmented by including the distance

in other allocations, such as value functions or endogenous states.

If the distance is smaller than the tolerance level, the algorithm is converged. Otherwise, I

make the following updates on the guess:6

p
(n+1)
t = p

(n)
t ψ1 + p∗t (1− ψ1)

V
(n+1)
t = V

(n)
t ψ2 + V ∗

t (1− ψ2)

Φ
(n+1)
t = Φ

(n)
t ψ3 +Φ∗

t (1− ψ3)

4In this step, if the endogenous state is a distribution, I use the non-stochastic simulation method (Young, 2010).
5It is worth noting that the prices here are not the market-clearing prices that are determined from the interactions

between demand and supply. Rather, they are the prices implied by the market-clearing condition given either demand
or supply fixed at the nth iteration:

p∗t = argp̃{Q
D(p

(n)
t , Xt, Xt+1)−QS(p̃, Xt, Xt+1) = 0} or

p∗t = argp̃{Q
D(p̃, Xt, Xt+1)−QS(p

(n)
t , Xt, Xt+1) = 0}.

In the computation method used in Krusell and Smith (1997), a market-clearing price needs to be computed in an
additional loop due to the non-trivial market-clearing condition. The implied price cannot replace the market-clearing
price in this method, as the misspecified price prediction rule can lead to a divergent law of motion of the aggregate
allocation. In contrast, due to the missing market clearing step, the RTM significantly saves computation time.

6In highly nonlinear aggregate dynamics, I have found that the log-convex combination updating rule marginally
dominates the standard convex combination updating rule in terms of convergence speed. The log-convex combination
rule is as follows:

log(p
(n+1)
t ) = log(p

(n)
t )ψ1 + log(p∗t )(1− ψ1).
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for ∀t ∈ {0, 1, 2, 3, ..., T}. With the updated guess {V (n+1)
t ,Φ

(n+1)
t , p

(n+1)
t }Tt=0, I go back to

Step 1.

(ψ1, ψ2, ψ3) are the parameters of convergence speed in the algorithm. If ψi is high, then

the algorithm conservatively updates the guess, leaving the algorithm to converge slowly. If the

equilibrium dynamics are almost linear, as in Krusell and Smith (1998), uniformly setting ψi at

around 0.9 guarantees convergence at a fairly high convergence speed. However, if a model is highly

nonlinear, the convergence speed needs to be controlled to be substantially slower than the one in

the linear models. This is because the nonlinearity can lead to a sudden jump in the realized

allocations during the iteration if a new guess is too dramatically changed from the last guess. A

heterogeneous updating rule ψi ̸= ψj (i ̸= j) is also helpful in cases where the dynamics of certain

allocations are particularly more nonlinear than the others.

Depending on the models, the guessed bundle can include the paths of the optimal decision rules

on top of the basic three allocations. For example, in an application for a global nonlinear solution

for the canonical New Keynesian model with Rotemberg price adjustment cost, the paths of labor

demand and consumption are all included in the bundle of guess and simultaneously updated with

the inter-temporal policy functions, endogenous states, and prices.7

As can be seen from the convergence criterion in Step 5, the algorithm stops when the predicted

allocation paths (nth iteration) are close enough to the realized allocation paths (with asterisks).

Therefore, once the convergence is achieved, the solution is guaranteed to be dynamically consis-

tent: the predicted path coincides with the realized path. If the accuracy is measured in R2 or

in the mean-squared errors, as in Krusell and Smith (1998), the RTM features R2 at 1, and its

mean-squared error becomes negligibly different than zero.

A.2 The required length of simulation path

In this section, I discuss how long a simulation needs to be for the RTM. First, one of the most

crucial determinants of the desired length is the assumed Markov process of the exogenous aggregate

states. That is, the number of realizations of each exogenous state during the simulation is the

key information. As in Krusell and Smith (1998), if only two aggregate states are realized based

on a symmetric transition probability of a moderate level (0.875), the simulation of 500 periods

is good enough to make the solution stay unaffected by further lengthening. However, for models

7The sample code and the model elaboration is available in the Online Appendix.
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with more complex exogenous state processes, a longer simulation may be required. If an aggregate

TFP process is discretized by the Tauchen method, covering three standard deviation ranges, at

least 3,000 periods are needed to have enough realizations (at least 30) for both ends of the grids.

The persistence of the exogenous state process also plays a role, with greater persistence requiring

longer simulation periods.8

The nonlinearity of the model is another critical factor in determining the required simulation

length. In practice, the RTM groups periods with similar endogenous aggregate states and uses

piecewise interpolation to fill in missing observations. For highly nonlinear DSGE models, having

additional observations in each exogenous state realization can substantially improve the accuracy

of the solution by providing more nodes for interpolation. In the case of the highly nonlinear RBC

model with irreversible investment, increasing the simulation length gradually changes the solutions

until 4,000 periods are reached, after which the solution remains unaffected by additional periods.

While the required simulation length for the RTM is not necessarily longer than that used in

the state space-based approach, it varies depending on the shock’s persistence and the model’s

nonlinearity. The accuracy of the RTM stems from its ability to update the entire predicted path

of allocations based on the entire realized path, which maximizes the information passed on to the

next iteration. This contrasts with the state space-based approach, which relies on a functional

relationship between the current and future periods that only summarily captures the dynamics.

As a result, the RTM can achieve high accuracy without requiring a particularly longer simulation

period compared to alternative methods.

A.3 Implementation of the sufficient statistic approach

In the algorithm explained in the previous section, Step 2-a is the most demanding step for

heterogeneous-agent models, as it needs to find a period t̃ + 1 that is identical to period t + 1

in terms of distribution. Therefore, the similarity of the distributions across the periods needs to

be measured, which is computationally costly.

However, if there is a sufficient statistic that can perfectly represent a period’s endogenous

aggregate state, the computational efficiency can be substantially improved. This enables to locate

the target period t̃+1 by only comparing the distance between these sufficient statistics instead of

the distributions. For example, in Krusell and Smith (1998), if the aggregate capital is the sufficient

8It is important to note that the RTM is not unique in its sensitivity to simulation length. Other approaches, such
as the state space-based approach, also require a sufficient number of observations in each exogenous state realization
to ensure accuracy.
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statistic, Step 2-a becomes easier as follows:

t̃+ 1 = arg inf
τ∈TB

||K(n)
τ −K

(n)
t+1||∞.

As the algorithm relies on the ergodicity, a sufficiently long period of simulation is needed for

accurate computation. However, in practice, the simulation ends in finite periods. Therefore, the

period t̃+1 that shares exactly identical sufficient statistic as period t+1 might not exist. For this

hurdle, the following adjusted versions of Step 2-a and Step 2-b help improve the accuracy of the

solution:

2-a′. Find t̃up + 1 where the sufficient statistic of the endogenous aggregate state is closest to the

one in period t+ 1 from above, but the shock realization is different from period t+ 1:

t̃up + 1 = arg inf
τ∈TB s.t. e

(n)
τ ≥e

(n)
t+1

||e(n)τ − e
(n)
t+1||∞,

where eτ denotes the sufficient statistic of the endogenous aggregate state in period τ . Simi-

larly, find t̃dn + 1 where the sufficient statistic of the endogenous aggregate state is closest to

the one in period t+ 1 from below, but the shock realization is different from period t+ 1:

t̃dn + 1 = arg inf
τ∈TB s.t. e

(n)
τ <e

(n)
t+1

||e(n)τ − e
(n)
t+1||∞.

Then, I have e
(n)

t̃up+1
and e

(n)

t̃dn+1
that are closest to e

(n)
t+1 from above and below, respectively.

Using these two, I compute the weight ω to be used in the convex combination of value

functions in the next step:

ω =
e
(n)
t+1 − e

(n)

t̃dn+1

e
(n)

t̃up+1
− e

(n)

t̃dn+1

.

2-b′. Compute the expected future value function as follows:

EtṼt+1 = πG,GV
(n)
t+1 + πG,B

(
ωV

(n)

t̃up+1
+ (1− ω)V

(n)

t̃dn+1

)
.

Step 2-a’ and Step 2-b’ construct a synthetic counterfactual conditional value function by the
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convex combination of the two value functions that are for the most similar periods to period t+1.

These adjusted steps help accurately solve the problem in relatively short periods of simulation.

For example, the model in Krusell and Smith (1998) can be accurately solved using only T = 500

periods of simulation (except for 100 burn-in periods at the beginning and the end of the simulated

path).

The step of interpolation after finding the closest periods in terms of sufficient statistics can be

understood as a piecewise interpolation, in contrast to the unconditional linear interpolation used

in the state space-based approach based on the regression coefficients.

B The method’s performance comparison: Krusell and Smith

(1998) and Khan and Thomas (2008)

This section compares the performance of the RTM with the existing methods based on the

heterogeneous-agent models. First, I compare the equilibrium allocations obtained from the RTM

and the ones from the method in Maliar et al. (2010) for the model of Krusell and Smith (1998).9

The RTM computes the exact level of the Lagrange multiplier for the occasionally binding con-

straint at the individual level, which enables the accurate computation. The path of the lagrange

multipliers is computed by the residuals using the Euler equation as in Rendahl (2014).10 With both

algorithms calibrated to converge in approximately two minutes, their accuracy in terms of square

root dynamic consistency differs by less than 10−5. This negligible difference, despite Maliar et al.

(2010) not computing Lagrange multipliers for occasionally binding constraints, reflects a model

characteristic: the total amount of wealth held by constrained households is negligibly small, not

meaningfully contributing to the aggregate capital dynamics. The similar performance between the

two algorithms is due to the linearity of the capital dynamics, which makes the state space-based

approach and the sequence space-based approach only negligibly different. It takes around 20 min-

utes for the RTM to converge under the convergence speed parameter ψ1 = ψ2 = ψ3 = 0.8, which

is a similar computation speed as Maliar et al. (2010) algorithm.

Figure B.1 plots a part of the predicted path {K(n)
t }Tt=0 and the realized (implied) path {K∗

t }Tt=0

of aggregate capital Kt obtained from the RTM and the simulated path from the fitted log-linear

9The parameters are set as in the benchmark model in Krusell and Smith (1998) without idiosyncratic shocks in
the patience parameter β.

10For some models where an occasionally binding constraint includes the current individual/aggregate state (e.g.,
irreversible investment), it is necessary to compute the expected future Lagrange multipliers. The RTM can accurately
compute this expectation. Section C.1 and C.2 provide further explanations.
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law of motion (Krusell and Smith, 1998).11 As can be seen from all three lines hardly distinguished

from each other, the RTM computes almost identical equilibrium allocations as the log-linear law

of motion by Krusell and Smith (1998). This is because the log-linear specification almost perfectly

captures the actual law of motion in the model.

Figure B.1: Equilibrium aggregate capital dynamics (Krusell and Smith, 1998)
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Notes: The figure plots the time series of the aggregate wealth (capital) Kt in the model of
Krusell and Smith (1998). The line with a round tick mark is the predicted wealth time series

(nth guess) {K(n)
t }1000t=500. The line with the square tick mark is the realized wealth time series

{K∗
t }1000t=500. The dashed line is the predicted wealth time series implied by the law of motion

in Krusell and Smith (1998).

However, when a model features a non-trivial market-clearing condition, as in the model of

Khan and Thomas (2008), the RTM substantially outperforms the state space-based approach

based on the law of motion Krusell and Smith (1997). This is because their method requires to

include an extra loop to find an exact market clearing prices in each period, while the RTM avoids

this computational burden by using implied prices that converge to market clearing values in the

limit of iterations.

To compare these approaches, I solve the Khan and Thomas (2008), using both the RTM

and the Krusell and Smith (1997) algorithm its additional market-clearing loop. The substantial

difference in computational efficiency complicates direct timing comparisons. Therefore, I instead

evaluate both methods under identical dynamic consistency termination criteria. Figure B.2 plots

the dynamics of price pt (panel (a)) and aggregate capital stock Kt (panel (b)) computed from

the RTM and Krusell and Smith (1997) algorithm. For the allocations computed from the RTM,

both the predicted time series and the realized time series are plotted. As shown in the figure, all

three lines display almost identical dynamics of the price and the aggregate allocations. The mean

squared difference in the solutions between the RTM and Khan and Thomas (2008) is less than

11This figure is motivated from the fundamental accuracy plot suggested in Den Haan (2010).
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10−5.

Figure B.2: Equilibrium allocation paths (Khan and Thomas, 2008)
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(b) Aggregate capital stocks Kt

Notes: The figure plots the time series of the price pt the aggregate wealth (capital) Kt in the model of Khan
and Thomas (2008). In both panels, the line with a round tick mark is the predicted time series (nth guess)

{p(n)
t ,K

(n)
t }1000t=500; the line with the square tick mark is the realized time series {p∗t ,K∗

t }1000t=500; the dashed line is the
predicted time series implied by the law of motion.

In terms of the computational efficiency, the two methods display a substantial discrepancy.

the RTM takes around 9 minutes to converge, while Krusell and Smith (1997) algorithm converge

in around 5 to 6 hours on average in MATLAB.12

For both models of Krusell and Smith (1998) and Khan and Thomas (2008), I use the RTM

using the sufficient statistic approach where the aggregate capital stock (the first moment) is used

as the sufficient statistic. For this approach, it is necessary to check whether the firm’s individual

value (marginal value) function is strictly monotone in the aggregate capital stock. Figure B.3 and

B.4 show the strict monotonicity holds, which validates the aggregate capital stock’s qualification

for a sufficient statistic.

Figure B.3 plots the levels of the marginal benefit of the Euler equation in the vertical axis

and the corresponding aggregate capital stock in the horizontal axis for an individual household

with the median-level capital stock and the unemployed status (low idiosyncratic productivity) in

the solution of Krusell and Smith (1998). Each panel is for different contemporaneous aggregate

productivity levels. The monotonicity stays unaffected regardless of the choice of the individual

household.

Figure B.4 plots the level of the value functions in the vertical axis and the the corresponding

aggregate capital stock in the horizontal axis for an individual firm with the median-level capital

12The convergence speed might change depending on the updating weight.
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Figure B.3: Monotonicity of the marginal value functions in aggregate capital stock
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Figure B.4: Monotonicity of the value functions in aggregate capital stock
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stock and idiosyncratic productivity in the solution of Khan and Thomas (2008). Each panel is for

the different contemporaneous aggregate productivity levels. The monotonicity stays unaffected

regardless of the choice of the individual firm.
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C Parameter levels in the leading applications

C.1 The leading application I: Krusell and Smith (1998) with endogenous labor

supply, investment irreversibility, and fiscal spending shock

The irreversibility constraint parameter is from Guerrieri and Iacoviello (2015). The aggregate

TFP process follows the same Markov chain as in Krusell and Smith (1998). The labor disutility

parameter is calibrated to match the steady-state labor supply at 0.33. The parameter choices are

based on annual frequency.

Table C.1: Parameters for the leading application I

Parameter Description Value

α capital share 0.330
β discount factor 0.960
δ depreciation 0.100
ϕ borrowing constraint parameter 0.975
η Frisch elasticity 1.000
η labor disutility 10.850
ρ idiosyncratic productivity persistence 0.800
σ idiosyncratic productivity volatility 0.014

G steady-state government demand 0.200 ∗ Y ss

ρA aggregate TFP persistence 0.900
σA aggregate TFP shock volatility 0.013
ρG government demand persistence 0.800
σG government demand shock volatility 0.01 ∗ Y ss

C.2 The leading application II: A heterogeneous-household RBC model of port-

folio choice (Krusell and Smith, 1997) with endogenous labor supply

The borrowing limit parameter and the aggregate TFP process are from Krusell and Smith (1997).

The labor disutility parameter is calibrated to match the steady-state labor supply at 0.33. The

parameter choices are based on quarterly frequency.
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Table C.2: Parameters for the leading application II

Parameter Description Value

α capital share 0.360
β discount factor 0.990
δ depreciation 0.025
η Frisch elasticity 1.000
η labor disutility 8.000
ρ idiosyncratic productivity persistence 0.900
σ idiosyncratic productivity volatility 0.050
b borrowing limit for the risk-free asset -2.400

B dummy bond term (only for computation) 20.000

D A heterogeneous-firm business cycle model with irreversible

investment

In this section, I show that the repeated transition method is powerful in solving nonlinear DSGE

models with heterogeneous agents. Specifically, I analyze a heterogeneous-firm real business cycle

model where individual firms are subject to the occasionally binding capital irreversibility con-

straint.

The representative household maximizes the following lifetime utility in the recursive form:

V (a;X) = max
c,a′,N

log(c)− ηN + βEV (a′;X ′)

s.t. c+

∫
M(X,X ′)a′(X ′)dΓX′ = a+ w(X)N

X ′ = GH(X)

where c is consumption; a is the asset (equity) value before dividend payment; N is labor supply;

M is the stochastic discount factor; w is wage; η is labor disutility parameter.13 The aggregate

state X is a bundle of the distribution of individual firms Φ and aggregate TFP A: X = {Φ, A}.

The representative agent rationally expects the law of motion GH of the aggregate states. I use

the apostrophe to indicate future allocations.

Heterogeneous firms solve the following maximization problem of the present value of the sum

13Following Khan and Thomas (2008), I assume the Frisch elasticity of the labor supply is infinity. However, the
repeated transition method also applies to the case of the finite Frisch elasticity seamlessly. In the online appendix
such examples are provided.
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of the dividend stream in the recursive form:

J(k, z;X) = max
k′

d+ Ez,XM(X,X ′)J(k′, z′;X ′)

s.t. d = π(k, z;X) + (1− δ)k − k′

k′ ≥ ϕIss + (1− δ)k

π(k, z;X) = max
k,n

Akαnγ − w(X)n

X ′ = GF (X)

where d is dividend; k is individual capital stock; z is the idiosyncratic productivity; n is the

labor demand; π is a temporal profit; δ is the depreciation rate; Iss is the steady-state aggregate

investment level; ϕ is the irreversibility parameter. GF is the law of motion of the aggregate state

from a firm’s perspective, which coincides with GH under the rational expectation and satisfies the

dynamic consistency in the recursive competitive equilibrium. The stochastic discount factor M is

determined in the competitive market as follows:

M(X,X ′) = β
c(X)

c(X ′)

The individual and aggregate log productivities follow AR(1) processes, which are discretized by

the standard Tauchen method.

The recursive competitive equilibrium is defined based on the following market-clearing condi-

tions:

(Labor market) N(X) =

∫
n(k, z;X)dΦ

(Equity market) a(X) =

∫
J(k, z;X)dΦ.

In the market clearing condition, the supply of equity meets the demand in the form of household

wealth.

For computation, I use the standard parameter levels in the literature, which are available

in Appendix C. For easier computation, I normalize the firm’s value function by contemporaneous

consumption c(S) following Khan and Thomas (2008). Then, I define a price p(S) := 1/c(S) and the

normalized value function J̃(k, z;S) := p(S)J(k, z;S). From the intra-temporal and inter-temporal

optimality conditions of households, w(S) = η/p(S) and M(S, S′) = βp(S′)/p(S). Thus, p(S) is
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the only price to characterize the equilibrium. Then, the equilibrium price p(S) is determined from

the following variant of the non-trivial market clearing condition:14

p = argp̃

{
1/p̃−

∫
[d(x;X, p̃) + w(X, p̃)n(x;X, p̃)] dΦ = 0

}
.

where the consumption is c = 1/p̃. In the problem above, the individual dividend policy d, wage w,

and labor demand n functions are augmented by an argument p̃, indicating that these objects are

calculated assuming the price is at the level of p̃. This is a fixed-point problem and computationally

costly to solve, as consumption c = 1/p̃ affects the firms’ inter-temporal decision, which in turn

affects the dividend, consumption, and thus, p̃. Instead of the market clearing price, the repeated

transition method uses the implied price p∗, which is obtained as follows:

p∗ = argp̃

{
1/p̃−

∫ [
d(x;X, p(n)) + w(X, p(n))l(x;X, p(n))

]
dΦ = 0

}
= 1/

∫ [
d(x;X, p(n)) + w(X, p(n))l(x;X, p(n))

]
dΦ,

where p(n) is the guessed price in the nth iteration. By bypassing the costly fixed-point problem,

the method dramatically improves the speed of the computation.

The first-order condition of a firm’s problem is as follows:15

1 = Ez,XM(X,X ′)J1(k
′, z′;X ′) + λ(k, z;X) (1)

where λ is the Lagrange multiplier of the occasionally binding constraint. The envelope condition

of a firm’s problem is as follows:

J1(k, z;X) = π1(k, z;X) + (1− δ)− λ(k, z;X)(1− δ)

= π1(k, z;X) + (1− δ)(1− λ(k, z;X)) (2)

Combining equations (1) and (2), we have the following inter-temporal optimality condition:

1− λ(k, z;X) = Ez,XM(X,X ′)(π1(k
′, z′;X ′) + (1− δ)(1− λ(k′, z′;X ′)))︸ ︷︷ ︸

Expected marginal benefit

,

14This condition is derived from combining the household’s budget constraint and the equity market clearing
condition.

15The subscript denotes the partial derivative with respect to the argument in the corresponding argument order.
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Figure D.5: Strict monotonicity of the marginal benefit in the aggregate capital stock
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The expected marginal benefit requires the computation of state-contingent allocations (X ′ −

dependent) of marginal profit π1 and Lagrange multiplier λ. For this problem, I take the sufficient

statistic approach, and the aggregate capital stock K(S) (the first moment of the distribution of

the firm-level capital stocks) is the sufficient statistic. I validate this approach by showing the

monotonicity condition of Proposition 1 is satisfied. In particular, I show that each individual’s

marginal benefit π1 + (1 − δ)(1 − λ) is strictly monotone in K for all aggregate exogenous state

realization (TFP level). Figure D.5 plots the marginal benefit in the vertical axis and the corre-

sponding aggregate equilibrium capital stock in the horizontal axis for different TFP levels (A1,

A2, A3, . . . , A7) given the individual state fixed at the median levels of capital stock and the

firm-level productivity. In the unreported tests, which are available in the sample code, I confirm

that monotonicity holds regardless of the choice of an individual firm.

For the computation, I run a simulation of 1,000 periods of aggregate TFP shock, where the

TFP is discretized by the Tauchen method, covering the two standard deviation ranges. The com-

puted aggregate capital path is highly nonlinear due to the occasionally binding constraint. Figure

D.6 plots a part of the predicted path {K(n)
t }Tt=0 and the realized (implied) path {K∗

t }Tt=0 of ag-

gregate capital Kt obtained from the repeated transition method and the simulated path from the

fitted log-linear law of motion. While the predicted path and the realized path coincide at the

equilibrium path, the log-linear prediction significantly deviates from the others.
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Figure D.6: The equilibrium path of aggregate capital stock
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D.1 Nonlinearity and aggregation

In this section, I compare the nonlinearity implied in the heterogeneous firm model with the one

in the representative firm model, which is obtained by simply muting the heterogeneous firm-level

productivity.16 For a valid comparison, I feed the same exogenous aggregate TFP path for both

models and compute the equilibrium using the repeated transition method. Figure D.7 plots a part

of the equilibrium capital path of the heterogeneous firm model (solid line) and the representative

firm model (dash-dotted line) in log deviation from each model’s steady state.

The volatility of the aggregate capital stock is significantly greater in the heterogeneous firm

model, which is the by-product of the greater volatility in the aggregate investment. Table D.3

reports the business cycle statistics of the two models. The output and investment are around 10

percent more volatile in the heterogeneous firm model than the other, while consumption volatilities

are at a similar level. The skewness of output is greater, and the skewness of consumption and

investment is lower in the heterogeneous firm model.

The representative firm model fails to represent the heterogeneous-firm model over the business

cycle. The reason is the nonlinearity at the firm-level capital dynamics.17 To see this, I compute

16All the parameters are assumed at the same level except for the firm-level productivity.
17This result is specific to this model. For example, Khan and Thomas (2008) shows that the general equilibrium

effect washes out the firm-level nonlinearity in their model.
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Figure D.7: Equilibrium dynamics comparison: Heterogeneous vs. representative
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Table D.3: Business cycle statistics: Heterogeneous vs. representative

Heterogeneous Representative

Volatility

log(Output) 0.042 0.039

log(Consumption) 0.034 0.034

log(Investment) 0.083 0.077

Skewness

log(Output) 0.672 0.638

log(Consumption) -0.049 -0.02

log(Investment) 1.757 1.926

the same heterogeneous and representative firm models without the occasionally binding constraint

(fully reversible investment), which is the source of the nonlinearity. I refer to this version as

the frictionless benchmark. Figure D.8 plots the aggregate capital dynamics of the frictionless

benchmark of both models in log deviation from the steady state and the predicted path by the

log-linear law of motion. These three lines perfectly coincide indicating that firm-level linearity

17



Figure D.8: Equilibrium dynamics comparison - frictionless: Heterogeneous vs. representative
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makes the perfect representation that is also linear.18

D.2 Parameters used for the heterogeneous-firm business cycle model with ir-

reversible investment

All the parameters are from Khan and Thomas (2008) except for the irreversibility constraint

parameter, which I used the level of Guerrieri and Iacoviello (2015).

18The relevance of the firm-level nonlinearity in this model is contrasted with the neutrality result of Veracierto
(2002). However, the two results are based on different firm-level setups, so the direct comparison is limited: the
leading application is based on the occasionally-binding irreversibility constraint, while Veracierto (2002) features an
(S, s) cycle in the firm-level capital stock.
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Table D.4: Parameters for the heterogeneous-firm business cycle model with irreversible investment

Parameter Description Value

α capital share 0.256
γ labor share 0.640
δ depreciation 0.069
ϕ borrowing constraint parameter 0.975
β discount factor 0.977
η labor disutility 2.400
ρ idiosyncratic productivity persistence 0.859
σ idiosyncratic productivity volatility 0.022
ρA aggregate TFP persistence 0.859
σA aggregate TFP volatility 0.014
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E A note on the bond market clearing condition in the extended

model of Krusell and Smith (1997)

The net zero bond supply condition in the leading application II Krusell and Smith (1997) leads

to non-invertible identity:

qb(X)B′ = B ⇐⇒ qb(X)× 0 = 0. (3)

Therefore, it is demanding to specify the implied price qb∗t in the bond market. To overcome this

issue, I introduce a dummy bond B > 0 such that

qb∗t B := Y
(n)
t − C∗

t − I∗t +B∗
t − q

b(n)
t B =⇒ qb∗t =

Y
(n)
t − C∗

t − I∗t +B∗
t − q

b(n)
t B

B
. (4)

n equilibrium, the national accounting identity must hold. During the iterative solution process, any

discrepancy between the implied output Y ∗
t and the nth-guess Y

(n)
t provides valuable information

for updating the bond price q
b(n)
t to satisfy this identity given the nth-guess q

b(n)
t . 19 This price

adjustment mechanism requires a dummy bond as an anchor point for relative price updates.

Without this reference asset (i.e., if the dummy bond value were zero), there would be no basis for

calibrating the bond price adjustments needed to satisfy market clearing conditions.

This approach can be generally used to pin down the implied price level required for non-

trivial market clearing conditions under net zero supply. By contrast, state-space-based approaches

directly solve for the market clearing price (qbt ) at the exact point where supply and demand curves

intersect at zero, eliminating the need for this dummy bond.

19The information gain does not necessarily have to come from the output. In an unreported result, I found the
difference in consumption also provides identifying variation for the implied bond price.
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