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Abstract

This paper develops a novel global nonlinear solution method for dynamic stochastic gen-

eral equilibrium models that achieves high accuracy and computational efficiency in sequence

space. The method computes conditional expectations of future value or policy functions by

contingently combining the previous iteration’s realizations without requiring a parametric law

of motion or parametrized expectation. The method efficiently handles rich heterogeneity and

occasionally binding constraints while providing theoretical foundations for dimensional reduc-

tion through sufficient statistics. Despite its simple implementation, the computation is highly

efficient, bypassing fixed-point problems in each iteration, including non-trivial market clearing,

as demonstrated by applications to various macroeconomic models.
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Fernández-Villaverde, Dirk Krueger, Andrew Abel, and Frank Schorfheide for their invaluable guidance and support.
I also thank Kosuke Aoki, Florin Bilbiie, Christopher Carroll, Vasco Carvalho, Chris Edmond, Martin Ellison, Wouter
Den Haan, Xiang Fang, Joel Flynn, James Graham, Zhen Huo, In Hwan Jo, Miles Kimball, Sagiri Kitao, Dongya Koh,
Eunseong Ma, Albert Marcet, Yusuf Mercan, Makoto Nirei, Alessandro Peri, Bruce Preston, José-Vı́ctor Ŕıos-Rull,
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1 Introduction

Modern macroeconomic analysis increasingly requires solving models with rich heterogeneity

and complex nonlinear dynamics. These features are crucial for understanding state-dependent

policy effects, the interplay between inequality and business cycles, and distributional responses

to aggregate shocks. However, existing solution methods face a challenging trade-off: they require

an increasingly intricate algorithm as model complexity grows, while more simple and efficient

methods rely on approximations that may miss important nonlinear dynamics.

This paper develops a solution method in the sequence space that resolves this trade-off, enabling

accurate global nonlinear analysis of complex models while maintaining implementation simplicity.

The approach does not assume perfect foresight and computes state-contingent expectations with-

out parameterizing laws of motion. By doing so, the global nonlinear solution is computed free

from the computation error stemming from potentially mis-specified law of motion. The method

is particularly valuable for analyzing state-dependent policy effects and nonlinear distributional

outcomes that standard linearization-based approaches may miss.

Moreover, this paper provides theoretical foundations for using sufficient statistics to solve dy-

namic stochastic general equilibrium (DSGE, hereafter) models with complex aggregate states,

including infinite-dimensional objects. Although sufficient statistics have proven valuable for sum-

marizing aggregate states, the precise conditions justifying their use in solving dynamic models

have remained an open question. This paper fills the gap by establishing theoretical conditions

that guarantee exact solutions when using sufficient statistics in the new solution method. This

theoretical advance enables the method to efficiently solve a broad spectrum of macroeconomic

models – from a standard real business cycle model to cutting-edge heterogeneous-agent models

with multidimensional aggregate states – all within a unified simple computational framework.1

Lastly, the RTM provides a substantial computation gain for models with period-by-period

fixed-point problems such as non-trivial market clearing conditions. Unlike conventional state-

space-based approaches that rely on computationally intensive internal loops, the RTM bypasses

this requirement entirely. Instead, it tracks the path of allocations (prices) implied by the fixed-point

condition and updates this path iteratively alongside other allocations. This process continues until

equilibrium is reached, where each period’s allocations naturally satisfy the fixed-point condition.

1All the sample MATLAB codes for various DSGE models with representative or heterogeneous agents, vari-
ous frictions, occasionally binding constraints, multiple aggregate states, New Keynesian, or DMP are available at
https://sites.google.com/sas.upenn.edu/hanbaeklee/computation-lab?authuser=0.
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This approach eliminates the need to solve numerous fixed-point problems while still guaranteeing

convergence to the correct solution.

The method’s key innovation lies in computing conditional expectations directly from realized

equilibrium allocations of previous iterations. In particular, the method, which I name the repeated

transition method (RTM, hereafter), exploits a fundamental property of DSGE models’ recursive

competitive equilibria - their recursivity. That is, if a simulated path of a stationary aggregate shock

process is long enough, an endogenous aggregate state is almost surely revisited. Along with this

recursion of the endogenous aggregate state, different exogenous aggregate states are stochastically

realized on the path, forming an ergodic set of aggregate states. This ergodic set encompasses

all the possible combinations of endogenous and exogenous aggregate states in equilibrium. This

property implies that all state-contingent future allocations are obtainable as realized equilibrium

outcomes somewhere on the sufficiently long simulated path.

Therefore, by identifying periods with equilibrium outcomes corresponding to each contingent

future state from the previous iteration, the RTM characterizes an agent’s conditional expecta-

tions at any point on the simulated path. The identifiability of such period is guaranteed by the

recursivity (or by the ergodicity) of the recursive competitive equilibrium. Then, the conditional

expectation converges to the true level (function) as iterations proceed, ensured by the stability

and the uniqueness of the recursive competitive equilibrium. Notably, this approach eliminates the

need to specify parametric laws of motion or expectations - the method requires only a metric to

assess similarity between aggregate states across periods.

For example, consider an agent’s infinite-horizon dynamic problem under aggregate uncertainty

with two possible exogenous aggregate states: G (Good) or B (Bad). To solve the agent’s problem

at period t, a researcher needs to construct the expected value (marginal value) function of period

t+1. The RTM accomplishes this by first identifying, for each possible future state St+1 ∈ {G,B},

a period in the previous iteration’s allocation path where the endogenous aggregate state most

closely matches that of period t+1. The expected future value function is then constructed by

combining the time-specific value functions from these identified periods. This approach works

because the ergodicity of a sufficiently long simulation ensures the existence of periods where

endogenous aggregate allocations (such as the distribution of individual states) match those of

period t+1 under each possible shock realization. Consequently, the expected future value (marginal

value) function at each period can be accurately constructed by combining these realized outcomes
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from the simulation path.2

The method iteratively updates the guessed (predicted) allocation path by using the realized al-

location path in the past iteration until they converge to each other.3 In these steps, each iteration

passes over the information of the whole sequence of the realized allocations to the next iteration,

utilizing the maximal set of information regarding the transition dynamics. This approach funda-

mentally differs from existing state-space methods, which restrict transition dynamics to functional

relationships between current and future states. By avoiding such parametric specifications, the

RTM accurately computes the equilibrium dynamics even in highly nonlinear models. Further, the

required simulation length for the RTM is not longer than that for the existing methods, as the

update based on the whole sequence utilizes all information about the dynamics, minimizing the

information waste per marginal increase in the number of periods in a simulation.

When a model includes multidimensional endogenous aggregate states, the step to compare such

high-dimensional objects across the periods can be a computational bottleneck.4 To address this

challenge, I establish theoretical foundations for using sufficient statistics in the RTM. Specifically,

I prove that when time-specific value functions are strictly monotone in an aggregate equilibrium

variable (conditional on individual and exogenous aggregate states), this variable serves as a suf-

ficient statistic that delivers exact solutions. The variable (sufficient statistic) effectively plays a

role as an indexing function of the value (marginal value) function’s ranking across the time and

thus as a similarity index.5 I demonstrate the power of this approach in a leading application to

an extended version of Krusell and Smith (1997), where a univariate sufficient statistic successfully

captures the dynamics of the multi-dimensional endogenous distribution through this monotonicity

property.

In terms of computational efficiency, the RTM offers substantial advantages over Krusell and

Smith (1997), particularly for models with period-by-period fixed-point problems like market clear-

ing conditions. While their method requires an internal loop to solve market-clearing conditions

in each period, the RTM avoids this computationally intensive step. Instead of finding exact fixed

2The method’s name - repeated transition method - reflects its key feature of utilizing repeated transitions between
the same (similar) endogenous states with different exogenous states.

3The terminology “predicted” means predicted from the perspective of researcher outside the model. It is equiv-
alent to nth guess for the allocation paths.

4Saving and updating the sequence of the distributions are also computationally burdensome tasks.
5The existence of such indexing variable is an important issue. However, the theoretical investigation of the

existence is beyond this paper’s scope. The author conjectures that the first moment of the endogenous individual
state’s distribution serves as a sufficient statistic if all individual inter-temporal policy functions are weakly monotone
in each exogenous state, and the strict monotonicity holds for non-zero measures of individuals in any aggregate state
realizations. Several applications in the online supplement support this conjecture, though I leave formal proof for
future research.
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points, it computes period-specific implied allocations (prices) from market clearing conditions and

updates these along with other allocations across iterations. Due to the stability and uniqueness

of the recursive competitive equilibrium, the implied allocation path converges to the true fixed

point path in the limit. Therefore, the RTM bypasses explicit fixed-point calculations entirely

while the converged equilibrium price path clears the market. This approach is feasible only in

the sequence space where the entire price path is tracked instead of summarizing the relationship

between the price and the contemporaneous sufficient statistics. The computational gains are par-

ticularly striking for models with complex aggregate states. For instance, in the Khan and Thomas

(2008) model with non-closed-form market clearing prices, the RTM achieves more than a tenfold

speed improvement. Similarly, in the leading application to the extended Krusell and Smith (1997)

model with endogenous labor supply, the RTM efficiently handles multiple non-trivial market clear-

ing conditions that typically create significant computational challenges for traditional approaches.

When the accuracy of the RTM is compared with the existing solution methods for a highly nonlin-

ear RBC model with occasionally binding investment irreversibility constraint (McGrattan, 1996;

Christiano and Fisher, 2000), the RTM achieves superior accuracy in terms of Euler equation errors

and dynamic consistency metrics compared to existing approaches.6

The RTM provides an integrated framework for solving a wide range of macroeconomic models.

The online supplement demonstrates this versatility through sample codes that address various com-

putational challenges, including 1) heterogeneous agents, 2) nonlinear aggregate dynamics including

occasionally-binding constraints, 3) non-trivial market clearing conditions, 4) multiple aggregate

shocks (including aggregate uncertainty shocks (Bloom et al., 2018)), 5) multi-dimensional endoge-

nous aggregate states, 6) frictional labor markets, and 7) sticky prices (New Keynesian models).7 I

also validate the sufficient statistic approach in these models by testing the monotonicity condition.

This paper’s first leading application extends the canonical heterogeneous-household real busi-

ness cycle (RBC, hereafter) model of Krusell and Smith (1998) by incorporating endogenous labor

supply, investment irreversibility, and fiscal spending shocks. This model combines several com-

putational challenges: heterogeneous households with idiosyncratic labor productivity, multiple

6The RTM achieves this accuracy using standard MATLAB code, without requiring lower-level programming
languages.

7Also, Lee et al. (2024) applies the RTM to Diamond-Pissarides-Mortensen (DMP) models with exogenous and
endogenous job separation to analyze nonlinear labor market dynamics. The RTM also solves nonlinear New Keyne-
sian models globally and accurately. Lee and Nomura (2024) applies the method to analyze the nonlinear inflation
dynamics and Phillips curve outside and at the zero lower bound (ZLB). The method’s ability to capture nonlinear
dynamics enables analysis of state and history dependence that directly maps to empirical observations (Pizzinelli
et al., 2020).
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exogenous aggregate states, non-trivial market clearing conditions, and occasionally binding con-

straints. Despite these features generating highly nonlinear aggregate dynamics, the RTM delivers

an accurate and efficient solution.

The global nonlinear solution of this model reveals two important insights about how micro-

level nonlinearities shape macroeconomic outcomes. First, it shows that nonlinearities cause ag-

gregate dynamics in the heterogeneous-household model to substantially deviate from those of

the representative-household model, despite sharing identical parameters except for idiosyncratic

productivity. This finding suggests that representative-agent approximations can significantly mis-

characterize dynamics away from steady state under nonlinear equilibrium. Notably, investment

and output volatilities are significantly muted in the heterogeneous-household model. This diver-

gence disappears when I remove the occasionally binding constraint, with both models’ dynamics

converging to log-linear dynamics. Second, it shows that the fiscal spending shock leads to state-

dependent multipliers due to the endogenous nonlinear variation in the portion of hand-to-mouth

households, complementing recent findings in the literature (Kaplan and Violante, 2014; Kaplan

et al., 2018). The model generates an empirically realistic share of wealthy hand-to-mouth house-

holds through occasionally binding saving irreversibility constraints. The global nonlinear solution

reveals that the fiscal spending multiplier is significantly greater during the periods of the high

portion of hand-to-mouth households. This analysis demonstrates how the RTM enables study of

endogenous state dependencies within a single equilibrium framework, avoiding the need to compare

different steady states or parameter values under linearized dynamics.

The second leading application is a heterogeneous-household RBC model with portfolio choice

(Krusell and Smith, 1997) and endogenous labor supply. This complex setting generates rich en-

dogenous aggregate states and features non-trivial market clearing conditions in both labor and

bond markets, along with two occasionally binding constraints. The RTM efficiently handles these

computational challenges while maintaining accuracy. Importantly, the marginal values in the mul-

tiple inter-temporal optimality conditions exhibit strict monotonicity in aggregate capital stock K,

validating the sufficient statistics approach. These findings highlight promising avenues for future

research, as the macroeconomic implications of heterogeneous portfolio choice over the business

cycle remain understudied despite their significance for macroeconomic policy. By overcoming the

computational barriers that have historically limited research in this area, the RTM opens new

possibilities for analyzing these critical but previously intractable questions.
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Related literature The state space-based approach developed by Krusell and Smith (1997,

1998), which uses parametric laws of motion, represents a foundational contribution to global so-

lution methods. While powerful for models with linear aggregate dynamics, this approach faces

challenges with nonlinear dynamics due to difficulties in correctly specifying the law of motion.

These specification challenges can lead to inaccurate computation of conditional expectations and

dynamic inconsistency in equilibrium paths. Alternative approaches have emerged to address these

limitations. Marcet (1988) and den Haan and Marcet (1990) introduced parameterized expecta-

tions, computing conditional expectations through parameterized functions with optimized coeffi-

cients. Den Haan and Rendahl (2010) advanced this literature by characterizing laws of motion

through explicit aggregation of Taylor-approximated individual policy functions, enabling analysis

of nonlinear dynamics. These methods share a common feature: they approximate conditional

expectations through combinations of basis functions. The RTM takes a fundamentally different

approach. Rather than approximating functional forms, it computes conditional expectations by

identifying periods with matching future state realizations and combining the corresponding value

or policy functions. This approach leverages three fundamental properties of DSGE models’ recur-

sive competitive equilibria - their recursivity, stability, and uniqueness - to deliver accurate solutions

without functional approximation.

The RTM shares key features with recent global solution approaches developed by Cao et al.

(2023) and Elenev et al. (2021), who achieve dynamic consistency by simultaneously solving tran-

sition equations and individual policy functions in state space. Like the RTM, their methods

update transition equations using implied dynamics. However, their approaches require functional

approximation when transition equations lack explicit forms. The RTM avoids this limitation by

operating directly in sequence space, utilizing the complete realized equilibrium path to update

transition dynamics without approximation or fitting. This fundamental difference leads to both

greater efficiency and higher accuracy. The RTM’s computational advantages extend beyond this

core innovation. As I demonstrate in subsequent sections, this approach delivers particular gains

in solving models with non-trivial market clearing conditions, significantly reducing computational

burden while maintaining solution accuracy.

While also operating in sequence space, the RTM differs fundamentally from Auclert et al.

(2021), which achieve remarkable computational efficiency through sequences of Jacobians. Their

approach enables rapid likelihood-based estimation but requires perfect foresight. The RTM, in

contrast, handles aggregate uncertainty while maintaining computational efficiency. This capability
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allows the method to accurately compute period-specific expected outcomes under uncertainty,

distinguishing it from perfect-foresight approaches in the literature (Fair and Taylor, 1983; Juillard,

1996; Judd, 2002; Cai et al., 2017; Boppart et al., 2018). The RTM further differentiates itself by

computing aggregate allocations and market-clearing prices directly on the simulated path without

requiring law of motion specifications. This approach contrasts with perturbation and linearization

methods (Reiter, 2009; Boppart et al., 2018; Ahn et al., 2018; Winberry, 2018; Childers, 2018),

providing a more direct route to equilibrium solutions.

The RTM shares important features with simulation-based methods developed by Judd et al.

(2011) and Maliar et al. (2011), which achieve computational efficiency by focusing on the realized

ergodic state space. The RTM builds on this insight while making a crucial advance: we use the

information contained in the realized state space to construct agents’ conditional expectations at

each point on the simulated path, significantly improving solution accuracy.

The RTM’s reliance on a single, sufficiently long simulated path of aggregate shocks connects

to recent work by Kahou et al. (2021). They show that aggregate dynamics can be characterized

by solving a finite set of agents’ problems using a single Monte Carlo draw of individual shocks

under permutation invariance, computing the law of motion through deep learning. The RTM

takes a different approach, using the long simulation to identify state-contingent outcomes directly,

avoiding the need for functional approximation.

Roadmap Section 2 explains the repeated transition method. Section 3 explains the sufficient

statistic approach. Section 4 explains how the RTM bypasses non-trivial market clearing conditions.

Section 5 validates the accuracy and speed of the RTM through a comparison with the existing

methods in the literature. Section 6 explains the RTM applications to the leading examples. Section

7 concludes.

2 The repeated transition method

2.1 A generic model framework

This section develops the repeated transition method (RTM) by first introducing a generic model

framework that encompasses a broad class of dynamic stochastic general equilibrium (DSGE) mod-

els. The framework’s flexibility allows it to accommodate both heterogeneous and representative

agent specifications. I denote the individual state as x and the aggregate state as X. The individual

state x is composed of the endogenous individual state a and the exogenous individual state s (the
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idiosyncratic shocks). The aggregate state X is composed of the endogenous aggregate states Φ

and the exogenous aggregate state S (the aggregate shocks). The endogenous aggregate state Φ

takes different forms depending on the model class. In heterogeneous agent models, it represents

the distribution of individual states x, while in representative agent models, it captures the set of

aggregate allocations.

[Individual state] : x = {a, s} (1)

[Aggregate state] : X = {Φ, S} (2)

The idiosyncratic and aggregate shock processes are assumed to follow a Markov process with a

transition matrix Πs and ΠS , respectively. The value function is denoted as V . Following standard

notation, variables with apostrophes indicate future period values. The objective function of an

economic agent is composed of the contemporaneous part f(y, x′, x;X) and the expected future

value. The agent maximizes the objective function by choosing (y, a′), where y is a vector of

control variables that affects only the contemporaneous period. Then, the recursive formulation of

an agent’s problem is as follows:

V (x;X) = max
y,a′

f(y, a′, x;X) + Em(X,X ′)V (a′, s′;X ′) (3)

s.t. (y, x′) ∈ B(x;X,X ′, q), Φ′ = F (X) (4)

where m(X,X ′) is the stochastic discount factor; q(X,X ′) is a price bundle;

B(x;X,X ′, q) is the budget constraint; F (X) is the law of motion known to an individual agent.8

For notational convenience, I combine the price bundle (m, q) into p. The following market clearing

condition pins down the price p:9

[Market clearing] : p(X,X ′) = argp̃{QD(p̃, X,X ′)−QS(p̃, X,X ′) = 0}, (5)

where QD and QS are the functions of demand and supply, which are endogenously determined by

the model. For expositional clarity, I consider a simple case where the exogenous aggregate state

8The stochastic discount factor can be a constant, for example β, as in a canonical dynamic household’s problems.
In a dynamic firm problem, the stochastic discount factor needs to be included.

9Any period-specific fixed point problem can be considered in the RTM, such as the externality effect as a function
of endogenous allocations or non-trivial market clearing conditions. For brevity, I only include the non-trivial market
clearing condition.
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S can take two possible values {G,B} with a 2× 2 transition matrix ΠS .10

In the following sections, I explain the method based on the recursive form in value functions for

the comprehensiveness of exposition. However, the method is seamlessly applied even if the value

function is replaced by the first-order derivative or the policy functions. In the online supplement,

I provide multiple applications where the expected policy function is computed instead of the

expected value function.

The RTM achieves convergence in sequence space. Therefore, despite the converged equilib-

rium allocations being fully describable in a recursive form, I denote the equilibrium object in

a sequential expression, such as {Vt}, for the sake of a coherent explanation. Hereafter, given a

realized state {xt, Xt} for an individual (or representative) agent in a given period t, the value

function in the sequential expression Vt and the value function in the recursive form V (·;Xt) are

used interchangeably. The generic model framework nests the cases where the value function and

the constraint allow the analytical expression of the first-order optimality conditions. In such cases,

the marginal value function can replace the value function.

2.2 Assumptions

In this section, I discuss the necessary features of a model for the application of the RTM. The

method relies on the a) stability and the b) uniqueness of the recursive competitive equilibrium. If

a model violates these two conditions, convergence cannot be guaranteed. Also, the c) recursivity

of the equilibrium is a necessary condition. Without recursivity, there is a set of equilibrium

allocations in a period that will never become an equilibrium allocation again in the following

periods. In this case, the computation of the expectation of such allocations is not feasible in the

RTM.11 From this point on, I focus only on the models that satisfy these three conditions.

To ensure a well-defined equilibrium, I assume there is no redundancy in the representation

of the aggregate state X. Specifically, I require a one-to-one mapping between the economy’s

fundamental state and the aggregate state X, formalized as:

V (x;X) = V (x;X ′) for ∀x ⇐⇒ X = X ′. (6)

This condition rules out redundant state variables that could artificially generate equilibrium mul-

10The RTM’s applicability is not limited to a certain number of grid points for the aggregate shocks. Moreover,
multiple aggregate shocks can be considered an exogenous state.

11It is also conceptually challenging to let an agent form the expectation of such allocation.
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tiplicity through superfluous expansions of the state space. Put differently, X must contain exactly

the information necessary to characterize the aggregate economy, no more and no less.

2.3 The methodology

I start from explaining the basic structure of the methodology. Suppose T periods of aggre-

gate exogenous states {St}Tt=0 are simulated, and hypothetically the simulated path is long enough

to make almost all the possible equilibrium allocations happen on the path.12 The solution pro-

cess starts by conjecturing three time series: 1) value functions, {V (0)
t }Tt=0, 2) endogenous states

{Φ(0)
t }Tt=0, and 3) prices {p(0)t }Tt=0. Using these guesses, I solve the allocations backward from the

terminal period T to obtain the implied value function solution {V ∗
t }Tt=0, and simulate the economy

forward using the solution. The forward simulation generates the time series of the endogenous

states {Φ∗
t }Tt=0, and implied prices {p∗t }Tt=0 from the market-clearing conditions. Here the price p∗t is

the price implied by the market clearing condition, rather than the market clearing price. This dis-

tinction is discussed in detail in Section 4. The guess is then updated through convex combinations

of prior guesses and realized allocations to form {V (1)
t ,Φ

(1)
t , p

(1)
t }Tt=0. While this broad approach

shares similarities with perfect-foresight methods (Fair and Taylor, 1983), it differs fundamentally

in the backward solution step due to its treatment of conditional expectations.

To clarify this point, consider period t in iteration n+1, after solving backward from T to t+1.

Suppose the exogenous state at period t+1 is G (St+1 = G). To solve an agent’s problem at t, one

needs to construct an expected future value function EtṼt+1.
13 This presents a challenge: while

Vt+1(·, S = G) available from the backward solution, Vt+1(·, S = B) is not, as only one exogenous

state realizes in each period. I define this unobserved Vt+1(·, S = B) as a counterfactual conditional

value function.

The standard state space-based approach addresses this challenge by replacing time indices with

endogenous and exogenous aggregate states, interpolating endogenous states through an assumed

law of motion. The solution’s accuracy thus critically depends on correctly specifying this law of

motion. However, verifying the specification’s accuracy is impossible before solving the equilibrium.

An incorrect specification requires restarting the solution process with a new guess, presenting two

fundamental challenges: determining which statistics to include and selecting appropriate functional

12In theory, an infinitely long simulation needs to be considered, but for illustrative purposes, I consider a T -period
long simulation. Later in the application, a long-enough finite simulation is used as an approximation for the infinitely
long ergodic path.

13The method can potentially accommodate various expectation formations beyond rational expectations. The
conditional expectation computation step can be adjusted to any well-defined expectation structure.
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forms. This problem cannot be easily resolved unless the aggregate dynamics are known to be log-

linear, as in Krusell and Smith (1998).

The RTM takes a fundamentally different approach. Instead of specifying a law of motion, it

obtains the counterfactual conditional value function from another period t̃+1 where the endogenous

aggregate state matches that of period t+1 but realizes the counterfactual exogenous state:

Φ
(n)

t̃+1
= Φ

(n)
t+1 (7)

St̃+1 = B ̸= G = St+1. (8)

Under these conditions, all aggregate states in period t̃+ 1 match those of the counterfactual state

in period t+ 1, implying

V
(n)

t̃+1
(·, S = B) = V

(n)
t+1(·, S = B). (9)

Importantly, V
(n)

t̃+1
(·, S = B) is the observed factual conditional value function available in the nth

iteration. With both V
(n)
t+1(·, S = G) and V

(n)
t+1(·, S = B)(= V

(n)

t̃+1
(·, S = B)) available from iteration

n, the expected future value function EtṼt+1 can be consistently computed. This approach extends

naturally to finer discretizations of the aggregate shock process.14 The recursivity of the recursive

competitive equilibrium ensures that such a period t̃+ 1 exists almost surely in a sufficiently long

simulation.

This approach eliminates the need to specify a law of motion for computing expected future

value functions. Instead, the critical step becomes identifying period t̃ + 1 that replicates the

counterfactual conditions of period t + 1. This identification relies on tracking the sequence of

endogenous aggregate states {Φ(n)
t }Tt=0, which serves as the key criterion for locating appropriate

matching periods. In the Online Appendix A, I elaborate on the detailed steps to implement the

RTM and the required length of the simulated path. Due to the method’s ability to utilize the

full information from the entire sequence, it requires no additional simulation length beyond what

traditional methods demand.

3 A sufficient statistic approach

When a model includes a complex endogenous aggregate state, identifying the period t̃+ 1 that is

sharing the same aggregate states to period t+1 can be the most demanding step. For example, if a

14Most applications in the online supplement employ finer grids than two points.
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distribution of individual state is an aggregate state as in heterogeneous agent models, each period

on the simulated path needs to be compared with respect to an infinite-dimensional distribution.

However, if there is a sufficient statistic that can perfectly represent a period’s endogenous aggregate

state, the computational efficiency can be substantially improved. This enables to locate the

target period t̃+1 by only comparing the distance between these sufficient statistics instead of the

distributions. In the following section, I theoretically analyze the condition under which a variable

can be used as a sufficient statistic.

3.1 The qualification for the sufficient statistic

While a large body of literature has employed sufficient statistics to address the curse of dimen-

sionality in DSGE computation, the theoretical foundations justifying this approach have remained

unclear. Proposition 1 fills this gap by establishing precise conditions under which a variable can

serve as a valid sufficient statistic in the Repeated Transition Method.

Proposition 1 (The qualification for the sufficient statistic).

For a sufficiently large T , if there exists a time series of a variable {et}Tt=0 such that for each time

partition TS = {t|St = S}, ∀S ∈ {B,G} and for ∀(a, s),

(i) eτ0 < eτ1 ⇐⇒ Vτ0(a, s) < Vτ1(a, s) for any τ0, τ1 ∈ TS

or

(ii) eτ0 < eτ1 ⇐⇒ Vτ0(a, s) > Vτ1(a, s) for any τ0, τ1 ∈ TS ,

then et is the sufficient statistic of the endogenous aggregate state Φt for ∀t. That is,

ESV (x; Φ′, S′) =

∫
V (x; Φ′, S′)dΓS,S′ =

∫
Vτ̃(S′)+1(x)dΓS,S′

where τ̃(S′) + 1 = arg infτ∈TS′ ||eτ − et+1||∞.

Proof.

See Online Appendix E. ■

Proposition 1 states that when a time series {et}Tt=0 monotonically ranks the level of the cor-

responding period’s value function for each individual state, et qualifies as a sufficient statistic

for period t in the RTM. The intuition behind the proposition is as follows.Consider a researcher

searching for the appropriate value function to compute conditional expectations. If the correct

13



counterfactual period τ were known explicitly, identifying the appropriate value function would be

trivial since all value functions are indexed by time - Vτ would simply be the correct choice.

Now instead of τ , suppose the level of eτ is known to the researcher. Then, similar to the prior

situation where τ is known, the researcher can identify which value function to use because the

ranking information of eτ uniquely pins down the corresponding value function due to the strict

monotonicity. For example, if two periods τ0 and τ1 share the same level of et, thus eτ0 = eτ1 ,

then the strict monotonicity implies that Vτ0 = Vτ1 . Were this equality to fail (Vτ0 ̸= Vτ1), it would

lead to a contradiction by violating either the strict monotonicity condition or the validity of the

endogenous aggregate state Φ, which is the proof’s key idea.

This strict monotonicity establishes a bijection between sufficient statistics and target periods,

ensuring unique identification. The framework extends naturally to marginal value functions when

solving models through first-order optimality conditions. The key insight is that knowledge of the

ranking across different periods’ value functions enables precise identification of the appropriate

value function for any given period.

This theoretical result provides rigorous foundations for using sufficient statistics in the RTM.

In Section 6, I show how the monotonicity can be validated for converged solutions. Importantly, a

sufficient statistic that satisfies these conditions for the RTM may not qualify as a sufficient statistic

for laws of motion in state space-based approaches. This is because the statistic may not necessar-

ily include sufficient information about the inter-temporal dynamics of the endogenous aggregate

state variables. For example, in the nonlinear model explained in Section 6, if I fit the nonlinear

aggregate dynamics of the sufficient statistic obtained from the RTM to the nonlinear specifications

of the single sufficient statistic, R2 remains well below unity, indicating that one variable cannot

adequately capture the full law of motion. Nevertheless, the variable alone serves perfectly as a

sufficient statistic in the RTM by satisfying the monotonicity condition. This distinction highlights

a key advantage of the RTM: it can achieve exact solutions with simpler sufficient statistics because

it does not need to capture the full complexity of inter-temporal dynamics.

4 Non-trivial market clearing conditions

In this section, I explain how the RTM efficiently handles non-trivial market clearing conditions

and why this approach is infeasible in state space-based methods.

14



Consider the following market clearing condition:

QD(pt, Xt, Xt+1)−QS(pt, Xt, Xt+1) = 0.

pt := argp̃{QD(p̃, Xt, Xt+1)−QS(p̃, Xt, Xt+1) = 0}. (10)

where QD and QS are demand and supply functions; pt is the market clearing price; Xt and Xt+1

are the current and future aggregate states. The market clearing condition is non-trivial when either

demand, supply, or both lack closed-form characterization. For this problem, the RTM utilizes the

implied price p∗t instead of the exact clearing price pt, where

p∗t := argp̃{QD(p
(n)
t , Xt, Xt+1)−QS(p̃, Xt, Xt+1) = 0} or

:= argp̃{QD(p̃, Xt, Xt+1)−QS(p
(n)
t , Xt, Xt+1) = 0}. (11)

This approach fixes either demand or supply using the nth iteration’s guessed price, then finds

the price that clears the remaining side. Computing this implied price is substantially simpler

than finding the market clearing price, which requires solving a fixed-point problem where price

simultaneously affects both supply and demand.

During the iteration, the implied price does not clear the market at each period, as it’s only the

implied price. However, as iteration goes by, the predicted path of prices {p(n)t }Tt=0 converges to

the equilibrium prices {pt}Tt=0. This convergence makes the implied price clear the market in the

limit for the following reasons:15

lim
n→∞

QD(p
(n)
t , Xt, Xt+1)−QS(p∗t , Xt, Xt+1) = 0 (12)

=⇒ QD( lim
n→∞

p
(n)
t , Xt, Xt+1)−QS(p∗t , Xt, Xt+1) = 0 (13)

=⇒ QD(pt, Xt, Xt+1)−QS(p∗t , Xt, Xt+1) = 0 (14)

=⇒ p∗t = pt (∵ uniqueness of the equilibrium). (15)

Thus, the RTM’s converged solution delivers exact market clearing prices alongside other equilib-

rium allocations.

In contrast, the implied price cannot replace the market clearing price in the state space-

15The local continuity of demand or supply is necessary to proceed from the first to the second line. This should be
true except for the knife-edge case where the unique equilibrium is at the discontinuity point, which DSGE models
are barely subject to.
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based approach (Krusell and Smith, 1997) in general. In their approach, the price dynamics is

approximated by the parametric function of the aggregate state or the sufficient statistic, and the

coefficients of the function carry the information about the relationship between the price and the

aggregate state. Given that the number of coefficients cannot technically exceed the number of

periods, the coefficients can only carry the summarized information. If the coefficients are updated

based on the implied price rather than the market clearing price, the update is based on inaccurate

levels, thus leading to a biased coefficient.16 Then, the wrongly updated coefficients often lead to

a divergent path, as there is no theoretical guarantee that the coefficient of the functional form

features stability. The RTM, by contrast, preserves complete information about price-state relation-

ships by carrying entire sequences through iterations. This approach enables uniform convergence

in sequence space, guaranteed by equilibrium stability, without requiring functional approximations

or coefficient estimation.

5 Performance: Comparison with the existing methods

This section compares the RTM’s computational performance against existing global solution meth-

ods for heterogeneous-agent models. Detailed comparisons is available in Appendix B, which eval-

uates the RTM’s performance in two settings: the heterogeneous-household model of Krusell and

Smith (1998) comparing against Maliar et al. (2010), and the heterogeneous-firm model of Khan and

Thomas (2008), benchmarking against their original Krusell and Smith (1997) solution approach.17

The RTM demonstrates particularly substantial computational advantages in models featur-

ing non-trivial market clearing conditions. For example, when solving the Khan and Thomas

(2008) model, the RTM converges approximately ten times faster than the Krusell and Smith

(1997) algorithm. This efficiency gain stems from a fundamental methodological difference: while

state-space-based approaches require computationally expensive nested loops to find exact market

clearing prices in each period, the RTM employs implied prices that naturally converge to market

clearing values through iteration. This approach eliminates the need for nested fixed-point calcu-

lations while maintaining solution accuracy. However, it’s important to note that when the RTM

is applied to a heterogeneous-agent model as in Krusell and Smith (1998) without the non-trivial

market clearing condition, the RTM’s computational efficiency is similar to Maliar et al. (2010).

16While Bakota (2023) develops a method to update pricing rules approximately without exact market clearing,
improving state space computation speed, the RTM bypasses the need for such approximations entirely.

17All computations use a MacBook Pro 2021 with M1 Pro chip.
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Then, I compare the repeated transition method with the other nonlinear solution methods in

the literature for three DSGE models. The comparison is based on a real business cycle model with

irreversible investment (McGrattan, 1996; Christiano and Fisher, 2000), where I benchmark the

RTM against three alternatives: linearized solution, the OccBin method of Guerrieri and Iacoviello

(2015) and the GDSGE solution of Cao et al. (2023).

Consider a representative household solving the following problem:

V (a;X) = max
c,a′

c1−σ

1− σ
+ βEV (a′;X ′) (16)

s.t. c+ a′ − (1− δ)a = Aaα (17)

a′ − (1− δ)a ≥ ϕIss (18)

where V is the value function of a household. The value function’s arguments are wealth a and the

aggregate state X. c is consumption and σ is the risk-aversion parameter. Iss is the steady-state

investment level. ϕ is the parameter for the degree of the irreversibility. δ is the depreciation

rate, and α is the capital share in the production function F (a;A) := Aaα. Apostrophes denote

next-period variables. The aggregate state X is as follows

X = [K,A]. (19)

K is the aggregate capital stock, satisfying a = K in equilibrium, as the capital market clears. A

is TFP that follows the log AR(1) process:

log(A′) = ρlog(A) + σϵ, σ ∼ N(0, 1). (20)

The model features highly nonlinear aggregate dynamics due to the occasionally binding irre-

versibility constraint for capital investment. Therefore, besides the macroeconomic implications,

the model serves as an ideal testing ground for the accuracy of the different methods for the non-

linear solutions. For precise comparison, I generate a single TFP path using the Tauchen method

(7 grid points covering three standard deviations) and apply this path to all solution methods.

The simulation runs for 5,000 periods with 500 burn-in periods. Each method exhibits a trade-off

between accuracy and computational efficiency depending on convergence criteria. In this compar-

ison, I tune the repeated transition method to stop after around 90 seconds, matching the speed of
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the GDSGE toolkit.

The first four rows of Table 1 compare solution accuracy across methods, with columns pre-

senting results for the RTM, GDSGE, OccBin, and linearized solutions, respectively. I evaluate

accuracy using two criteria: dynamic consistency error (Errort) and Euler equation error (EEt)

following Judd (1992).18 The dynamic consistency error is defined as:

Errort = K
(n)
t −K∗

t (21)

where {K(n)
t }Tt=1 represents the capital stock sequence from each solution method, and K∗

t is the

implied capital path assuming agents expect {K(n)
t }Tt=1. The RTM constructs the period-specific

expected future allocations by properly combining allocations in the predicted path (the previous

iteration). Then, it provides the realized allocations implied by the prediction path. Dynamic

consistency requires these predicted and realized paths to coincide. Thus, the RTM to serve as a

diagnostic tool for other solution methods - by feeding their simulated paths as predicted paths

into the RTM algorithm, the RTM can evaluate their dynamic consistency.

The RTM displays a higher accuracy than other methodology in terms of the four statistics: the

absolute maxima of the dynamic inconsistency (first row) and the Euler equation error (third row);

the square roots of the mean-squared dynamic inconsistency (second row) and the Euler equation

error (fourth row).
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Figure 1: The equilibrium path of different solutions

Notes: The figure plots a subsample of the equilibrium dynamics computed using four different methods.
The solid line indicates the RTM; the dashed line is by linear method; the dotted line is by OccBin toolkit;
and the dash-dotted line is by GDSGE method.

The RTM achieves its accuracy and speed using standard MATLAB code, without relying on

18The Euler equation error specification follows Guerrieri and Iacoviello (2015).
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Table 1: Comparison across the solution methods

RTM GDSGE OccBin Linear

Accuracy

max(|Errort|) (% of steady-state K) 0.003 0.735 1.317 2.019√
mean(Error2t ) (% of steady-state K) 0.001 0.025 0.217 0.559

max(|EEt|) (% of contemp. Ct) 0.014 0.057 2.854 2.323√
mean(EE2

t ) (% of contemp. Ct) 0.002 0.059 0.775 0.707

Business cycle stat.

mean(I) 0.363 0.363 0.365 0.363

mean(C) 1.166 1.166 1.164 1.160

vol(I) 0.022 0.022 0.023 0.023

vol(C) 0.052 0.052 0.052 0.052

skewness(I) 1.363 1.320 1.307 1.407

skewness(C) -0.225 -0.213 -0.322 -0.095

kurtosis(I) 4.447 4.578 4.513 4.255

kurtosis(C) 2.776 2.546 2.858 2.796

Notes: The upper part of the table compares the accuracy of different computation methods based on four criteria:
1) maximum absolute prediction error, 2) square root of mean squared prediction error, 3) maximum absolute Euler
equation error, 4) square root of mean squared Euler equation error. The bottom part of the table compares the
computed equilibrium’s business statistics.

lower-level languages like C++ or advanced econometric techniques. The method’s dynamic consis-

tency error can theoretically be reduced to any arbitrary level by adjusting convergence tolerance,

suggesting potential for further improvement through integration with lower-level programming lan-

guages or modern machine learning techniques (Azinovic et al., 2022; Fernández-Villaverde et al.,

2023; Han et al., 2025).19

Table 1’s lower panel reports business cycle statistics across solutions. While lower-order mo-

ments show negligible differences, higher-order moments (skewness and kurtosis) reveal significant

variations across methods. Figure 1 illustrates these differences by plotting capital stock paths

from each solution method. The RTM solution most closely matches the GDSGE toolkit, while the

OccBin solution shows notable deviations, particularly when aggregate capital is high. The abso-

lute difference between RTM and OccBin solutions correlates positively with output (correlation

0.631), indicating pro-cyclical computation error. Conversely, differences between RTM and linear

solutions show counter-cyclical patterns (correlation -0.640). These patterns reflect each method’s

19One potential synergy between the RTM and the advanced machine learning techniques is in the identification
step for the target period from the previous iteration.
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relative strength: OccBin provides more accurate solutions during downturns when constraints

bind but less accurately captures precautionary behavior in normal times. The linear solution,

by contrast, fundamentally struggles with occasionally binding constraints, leading to large errors

during downturns.

6 Applications

The subsequent sections present two leading applications that extend Krusell and Smith (1997,

1998). These applications address important macroeconomic questions that have remained unex-

plored due to computational barriers. The RTM’s methodological breakthrough enables efficient

solution of these challenging problems.

6.1 The leading application I: Krusell and Smith (1998) with endogenous labor

supply, investment irreversibility, and fiscal spending shock

The first leading application extends the Krusell and Smith (1998) heterogeneous-household RBC

model by incorporating endogenous labor supply, investment irreversibility, and both aggregate

TFP and fiscal spending shocks. The model features a continuum of ex-ante identical households

of unit measure in an infinite-horizon discrete-time economy.

The model environment is characterized as follows. Each household faces uninsurable idiosyn-

cratic labor productivity shocks and makes endogenous labor supply decisions n. The temporal

utility is assumed to be a log utility with a future discount factor β > 0. At the beginning of each

period, households observe their individual states (wealth a and productivity z) and the aggregate

state X, forming rational expectations about future aggregate conditions X ′. Apostrophes denote

next-period variables.

The recursive formulation of a household’s problem is as follows:

V (a, z;X) = max
c,n,a′

log(c)− η

1 + 1
χ

n1+
1
χ + βEV (a′, z′;X ′) (22)

s.t. c+ a′ = (1 + r(X))a+ w(X)zn− T (X) (23)

a′ − (1− δ)a ≥ ϕIss (24)

Φ′ = ΓX(X) (Aggregate law of motion) (25)

S′ ∼ π(S′|S), z′ ∼ π(z′|z) (26)
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where V is the value function of a household; r and w are capital rent and wage that are determined

at the competitive input factor markets. Iss is the steady-state aggregate saving (investment) level.

T is the lump-sum tax. χ is the Frisch elasticity parameter, and η is the labor disutility parameter.

ϕ is the parameter that governs the degree of the saving irreversibility. ΓX is the aggregate law

of motion. The idiosyncratic productivity z follows a Markov process, where π(z′|z) governs the

transition probability.

We consider a production sector that operates using a CRS Cobb-Douglas production function:

max
K,L

AKαL1−α − w(X)L− (r(X) + δ)K, (27)

where A is the aggregate TFP, K and L are capital and labor input demands.

The aggregate state X includes following three components:

X = {Φ, A,G}. (28)

where Φ is the distribution of the individual states, A is TFP, and G is government demand. The

first is endogenous aggregate state, and the others follow exogenous log AR(1) processes specified

as follows:

log(A′) = ρAlog(A) + σAϵ ϵ ∼iid N(0, 1) (29)

log(G′) = (1− ρG)log(G) + ρGlog(G) + σGϵ ϵ ∼iid N(0, 1) (30)

where G is the steady-state government demand. For j ∈ {A,G}, ρj is the persistence parameter

for the exogenous processes, and σj is the volatility parameter. These processes are discretized by

the Tauchen method in the computation. I assume the simplest government setup where the budget

is balanced by lump-sum tax collection: T (X) = G. By assuming this, the symmetric lump-sum

tax is collected from heterogeneous households. For computation, I use the standard parameter

levels in the literature, which are available in Appendix C.

The recursive competitive equilibrium is defined based on the following market-clearing condi-

tions:

(Labor market) L(X) =

∫
zn(a, z;X)dΦ (31)

(Capital market) K(X) =

∫
adΦ. (32)

The market clearing is non-trivial as the wage determines individual labor supply, which needs
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to be aggregated instead of directly pinning down the aggregate labor supply. To illustrate this, I

introduce an aggregate labor demand curve L̃ and an individual labor supply curve ñ, all of which

include a price level w̃ as an argument:

w(S) = argw̃

{
L̃(w̃,X)−

∫
ñ(a, z; w̃,X)dΦ = 0

}
= argw̃

{(
(1− α)A

w̃

) 1
α

K −
∫ (

zw̃

ηc(a, z; w̃,X)

)χ

dΦ = 0

}
. (33)

Line (33) follows from the first-order optimality conditions from the production sector (demand)

and the household (supply). Given each wage level w̃, the optimal consumption of the household

needs to be specified, which requires an internal loop for clearing.20 This fixed-point problem

is computationally costly to solve. However, instead of the market clearing price, the repeated

transition method uses the implied price w∗, as follows:

w∗ = argw̃

{
L̃(w̃,X)−

∫
ñ(a, z;w(n), X)dΦ = 0

}
= argw̃

{(
(1− α)A

w̃

) 1
α

K −
∫ (

zw(n)

ηc(a, z;w(n), X)

)χ

dΦ = 0

}
. (34)

where w(n) is the guessed wage (predicted wage) in the nth iteration. By bypassing the costly

fixed-point problem, the method dramatically improves the speed of the computation.

From the first-order condition, the following inter-temporal optimality condition is obtained:

1

c(a, z;X)
= βEz,X

[(
1

c(a′, z′;X ′)

)
(1 + r(X ′))− (1− δ)λ(a′, z′;X ′)

]
+ λ(a, z;X) (35)

where λ is the Lagrange multiplier of the irreversibility constraint. The left-hand side of the equation

above is the marginal cost of saving in the unit of utility, and the right-hand side is the expected

marginal value of saving. The marginal value includes contemporaneous gain out of relaxing today’s

constraint (+λ(a, z;X)) and the cost of tightening the future constraints (−(1− δ)λ(a′, z′;X ′)).

The expected marginal value requires the computation of state-contingent allocations (X ′ −

dependent) of marginal utility 1/c, capital rent r, and Lagrange multiplier λ.21 In the computation

of these terms, I employ the sufficient statistic approach described in Section 3.1, using aggre-

20If a GHH utility is considered, this problem becomes trivial due to the missing wealth effect coming through
the consumption in the denominator. However, the wealth effect is the key channel for the fiscal policy as will be
demonstrated in the following section.

21The RTM computes the exact level of the Lagrange multiplier for the occasionally binding constraint at the
individual level, which enables the accurate computation. The path of the lagrange multipliers is computed by the
residuals using the Euler equation as in Rendahl (2014).
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Figure 2: Strict monotonicity of the marginal value in the aggregate capital stock

Notes: The figures are scatter plots of the marginal value functions in the vertical axis and the average capital as a
sufficient statistic in the horizontal axis for different exogenous aggregate states (different panels) given the median
level of individual wealth and productivity levels.

gate capital stock K(X) - the first moment of the individual wealth distribution - as the sufficient

statistic. To validate this approach, I demonstrate that each individual’s marginal value satisfies

the strict monotonicity condition required by Proposition 1 across all aggregate exogenous state

realizations. Figure 2 provides graphical evidence, plotting marginal values against aggregate capi-

tal stock across different TFP and government demand levels (A1, A2, A3, ..., A21) with individual

states fixed at median levels of wealth and labor productivity. To systematically check the mono-

tonicity, I compute the Spearman’s coefficient between the sufficient statistic and the marginal

value for each combination of individual states and exogenous aggregate states. The coefficient

of unity implies the perfect monotonicity. In this analysis, the minimum coefficients among all

combinations for both optimality conditions are distant from unity by 10−15. The averages are not

distinguishable from unity, and the standard deviations are around 10−16. Thus, the monotonicity

property holds robustly across the entire cross-section of the individual states.

For the computation, I use a 3,000-period simulation with independent aggregate TFP and

government demand shocks. The TFP process is discretized using the Tauchen method with 7

grid points spanning three standard deviations, while the government demand shock uses 3 grid
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points covering one standard deviation. This yields 21 (= 3 × 7) total grid points for exogenous

aggregate state variations. The solution reveals highly nonlinear dynamics in the aggregate capital

path, driven by the occasionally binding constraint. Figure 5 compares three capital paths: the

predicted path {K(n)
t }Tt=0, the realized (implied) path {K∗

t }Tt=0 from the RTM, and a simulated

path using a fitted log-linear law of motion. While the predicted and realized paths coincide to

form the equilibrium solution, the log-linear approximation shows significant deviations.22
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Figure 3: The equilibrium path of aggregate capital stock

Notes: The figure plots the time series of the aggregate capital stock Kt in the extended model of Krusell
and Smith (1998). The solid line is the predicted capital (nth guess) {K(n)

t }1000t=600. The dashed line is the
implied capital {K∗

t }1000t=600. The dotted line is the capital predicted by the linear law of motion.

6.1.1 Nonlinearity and aggregation

This section examines how micro-level nonlinearities shape aggregate dynamics by compar-

ing heterogeneous and representative agent versions of the model. I contrast the heterogeneous-

household model (HH) with a representative-household variant (RH) that eliminates labor produc-

tivity heterogeneity while maintaining all other parameter values. To ensure precise comparison, I

apply identical aggregate TFP paths to both specifications and solve them using the RTM.

Figure 4 presents comparative dynamics in two contexts. Panel (a) displays equilibrium capital

paths for the HH model (solid line) and RH model (dash-dotted line), expressed as log deviations

from their respective steady states. For broader perspective, Panel (b) provides an analogous com-

22Fitting the aggregate capital dynamics to a log-linear AR(1) specification with exogenous shock controls yields
an R2 of 0.996. However, as Den Haan (2010) demonstrates, such seemingly high R2 values can mask substantial
inaccuracies in aggregate dynamics as shown in Figure 3. Achieving high accuracy requires considerably more complex
specifications than log-linear forms (details available upon request).
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parison between heterogeneous-firm and representative-firm models subject to the same investment

irreversibility constraint.23
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Figure 4: Equilibrium dynamics comparison: Heterogeneous households vs. firms

Notes: Panel (a) plots the subsample of the equilibrium capital dynamics for heterogeneous household model (solid)
and the representative household counterpart (solid). Panel (b) plots the subsample of the equilibrium capital
dynamics for heterogeneous firm model (solid) and the representative firm counterpart (solid).

The analysis reveals striking differences in aggregate dynamics between heterogeneous and

representative agent specifications. HH exhibits substantially lower capital stock volatility than

RH, driven by reduced investment volatility. However, this volatility reduction does not stem

merely from the presence of micro-level heterogeneity per se. Indeed, panel (b) demonstrates

that heterogeneous-firm models display markedly higher capital stock volatility, stemming from

increased investment volatility. This contrast highlights how the specific nature of heterogeneity

shapes aggregate nonlinear dynamics.

The business cycle statistics reported in Table 2 quantify these differences. While the HH and

RH models generate similar time-series averages, they differ notably in higher moments. The HH

model produces lower volatility in both output (5% reduction) and investment (18% reduction),

though consumption volatility remains similar between the specifications. The models also differ in

asymmetry: the HH model exhibits more negative skewness in output and consumption, but more

positive skewness in investment.24

Therefore, the representative-household model fails to adequately capture business cycle dy-

namics present in the heterogeneous-household model. The key driver of this misalignment is non-

linearity in household-level wealth dynamics.25 To see this, I compute the same heterogeneous and

23Online Appendix D provides detailed specifications for the heterogeneous-firm model with irreversible investment
shown in Panel (b).

24Detailed business cycle statistics for the firm-side comparisons are provided in Appendix D.
25This result is specific to this model. For example, Khan and Thomas (2008) shows that the general equilibrium
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Table 2: Business cycle statistics: heterogeneous (HH) vs. representative household (RH)

Heterogeneous Representative

Mean

Output 0.512 0.508

Consumption 0.288 0.287

Investment 0.122 0.120

Volatility

log(Output) 0.042 0.044

log(Consumption) 0.057 0.058

log(Investment) 0.049 0.060

Skewness

log(Output) -0.026 0.024

log(Consumption) -0.363 -0.349

log(Investment) 0.936 0.874

Notes: The table reports the business cycle statistics implied by the heterogeneous agent model (the first
column) and the representative counterpart (the second column).

representative household models without the occasionally binding irreversibility constraint (fully

reversible investment), which is the source of the nonlinearity. Specifically, for the HH benchmark,

the irreversibility constraint is replaced by zero borrowing limit constraint as in Krusell and Smith

(1998) and Aiyagari (1994). Figure 5 plots equilibrium capital dynamics for these ’reversible bench-

mark’ cases, showing log deviations from steady state alongside a fitted log-linear law of motion.

The perfect alignment of all three paths demonstrates that when heterogeneous household deci-

sions are (near-)linear, the representative agent model provides an almost exact characterization of

aggregate dynamics.26

6.1.2 Policy implication: endogenous state dependence of the fiscal multiplier

State-dependent policy effects are a crucial feature of models with nonlinear aggregate fluc-

tuations, yet analyzing these effects requires solution methods that can accurately capture global

nonlinearities. The model in this paper provides an ideal laboratory for studying such state depen-

dence through the lens of household borrowing constraints. The key mechanism operates through

an asymmetric wealth adjustment constraint: households face greater friction when attempting to

reduce their wealth positions than when increasing them. This asymmetry creates state-dependent

marginal propensities to consume (MPCs), as households near their constraint exhibit nearly one-

effect washes out the firm-level nonlinearity in their model.
26The hand-to-mouth households in Krusell and Smith (1998) and Aiyagari (1994) display kinked saving policy.

However, their contribution to the aggregate capital dynamics is almost negligible.
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Figure 5: Equilibrium dynamics comparison - frictionless: Heterogeneous vs. representative

Notes: The figure plots the time series of the aggregate capital stock Kt in the extended model of Krusell and Smith
(1998) without the irreversibility constraint. The solid line is the predicted capital (nth guess) {K(n)

t }1000t=600. The
dashed line is the implied capital {K∗

t }1000t=600. The dotted line is the capital predicted by the linear law of motion.

to-one consumption responses to negative income shocks while maintaining more modest responses

to positive shocks.

The model’s calibration generates patterns of household financial constraints that align remark-

ably well with empirical evidence. Using an irreversibility parameter of ϕ = 0.975 used in Guerrieri

and Iacoviello (2015), the model produces a steady-state share of 33.9% hand-to-mouth households,

which is highly consistent with the empirical estimates from Kaplan and Violante (2014). Impor-

tantly, the model captures a key feature of household financial constraints: they affect not only

low-wealth households but also wealthy ones who face temporary difficulties adjusting their wealth.

This feature emerges naturally from specifying the constraint in terms of the wealth adjustment

rather than the level of wealth. As a result, 21.6% of hand-to-mouth households in the model hold

above-average wealth, consistent with the “wealthy hand-to-mouth” phenomenon documented in

the literature.

A positive fiscal demand shock generates heterogeneous output responses that depend crucially

on the distribution of financially constrained households. When a large fraction of households face

binding constraints, the economy exhibits a powerful amplification mechanism: The lump-sum taxes

levied to finance government spending trigger substantial declines in household consumption, which

in turn induce a strong positive labor supply response through a wealth effect. This amplification

mechanism leads to a significant increase in aggregate output, as illustrated in Equation (36). In

contrast, when most households operate away from their constraints, the same fiscal shock induces

a more muted response. These unconstrained households can smooth consumption through saving
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adjustments, resulting in a smaller labor supply response and consequently a more modest output

expansion, as shown in Equation (37).

[Mostly constrained] : Ct︸︷︷︸
↓↓↓

+ It︸︷︷︸
↓

+ Gt︸︷︷︸
↑↑

= Yt ⇈ (∵ Large wealth effect) (36)

[Mostly unconstrained] : Ct︸︷︷︸
↓↓

+ It︸︷︷︸
↓↓

+ Gt︸︷︷︸
↑↑

= Yt ↑ (∵ Small wealth effect) (37)

To quantify this state dependence empirically, I estimate the following regression using simulated

data from the model’s global solution:

Yt = β0 + β1Gt + β2Gt × Λt + β3log(Kt) + β3log(At) + ϵt, (38)

where Yt is aggregate output; Gt is government demand measured in the unit of output; Λt is

the aggregated Lagrange multiplier defined by Λt = Λ(Xt) :=
∫
λ(a, z;Xt)dΦt. Λt captures both

the portion of constrained households and the average binding intensity. The coefficient of pri-

mary interest is β2, which captures how the fiscal multiplier varies with the prevalence of binding

constraints.

The baseline HH specification without interaction terms yields a fiscal multiplier of approxi-

mately 0.8 over a two-year horizon, aligning with empirical estimates from Ramey (2020). However,

incorporating state dependence through the interaction term reveals that this average effect masks

substantial variation: the direct effect β1 becomes notably smaller, while the interaction term ac-

counts for roughly 23.5% of output variation (= std(β̂2GtAt)/std(Y ) ≈ 23.5%). The model achieves

remarkable fit after including state dependence, with mean squared prediction errors below 10−6.

The result indicates that the fiscal multiplier is greater when a greater portion of households

are constrained, which endogenously fluctuate over the business cycle. Importantly, this implies

strong counter-cyclical variation in fiscal policy effectiveness in equilibrium: the negative correlation

(-0.788) between output Yt and the constraint intensity measure Λt indicates that borrowing con-

straints bind more frequently during economic downturns. This pattern implies that fiscal stimulus

becomes particularly potent precisely when the economy is weak, providing a natural stabilization

mechanism through state-dependent multipliers.

The third column presents the regression coefficients when the data is simulated from the

RH model. Notably, the degree of state dependence in HH remains largely unchanged in its

representative-agent counterpart. The fourth column reports the coefficients under the GHH utility
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Table 3: State-dependent fiscal spending multipliers

Dependent variable: Yt ($)

Hetero. (HH) Rep. (RH) GHH

Gt ($) 0.402 0.182 0.206 0.000
(0.005) (0.002) (0.000) (0.001)

Gt ($)× Λt 0.533 0.534 0.000
(0.003) (0.002) (0.000)

log(Kt) 0.143 0.105 0.104 0.496
(0.002) (0.001) (0.000) (0.000)

log(At) 0.463 0.598 0.591 1.504
(0.001) (0.001) (0.001) (0.000)

Constant Yes Yes Yes Yes
Observations 3,000 3,000 3,000 3,000
R2 0.992 0.999 0.999 0.999
Adjusted R2 0.992 0.999 0.999 0.999

Notes: The table reports the regression results based on specification (38). The first two columns
are results based on the heterogeneous household baseline model. The next column is based on the
representative-household counterpart. The last column is based on the representative household model
with GHH utility, where the wealth effect is muted.

specification, which eliminates the wealth effect arising from tax-driven consumption reductions.

When using contemporaneous consumption Ct as the dependent variable in the same regression

setup with the GHH utility, the results confirm that a fiscal demand shock significantly reduces

consumption, consistent with both the HH and RH models. However, this does not translate

into any effect on aggregate output, as indicated by the near-zero estimates for β1 and β2. These

findings highlight that the state-dependent fiscal multiplier operates through variations in the state-

dependent MPC and the resulting wealth effect. In this context, the key equilibrium property of

interest is global nonlinearity, which the RTM effectively captures by providing an accurate solution

in sequence space.

6.2 The leading application II: A heterogeneous-household RBC model of port-

folio choice (Krusell and Smith, 1997) with endogenous labor supply

In this section, I apply the RTM to the heterogeneous household’s portfolio choice problem

over the business cycle (Krusell and Smith, 1997), where households endogenously determine labor

supply. A continuum of unit measure of households who consumes, saves in two assets (capital and
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bond), and supplies labor, which is summarized by following recursive formulation:

V (a, b, z;X) = max
c,n,a′,b′

c1−σ

1− σ
− η

1 + 1
χ

n1+
1
χ + βEV (a′, b′, z′;X ′) (39)

s.t. c+ a′ + qb(X)b′ = a(1 + r(X)) + b+ zw(X)n (40)

a′ ≥ 0, b′ ≥ b (41)

Φ′ = ΓX(X) (Aggregate law of motion) (42)

S′ ∼ π(S′|S), z′ ∼ π(z′|z) (43)

where c is consumption; z is idiosyncratic labor productivity, which follows a log AR(1) process; n

is endogenously chosen labor supply; w is wage to be competitively determined at the factor input

market, which thereby indicates that zw(X)n is the labor income; a is the risky asset (capital)

that earns capital rent r = r(X) in each period, which is competitively determined at the capital

market; b is the risk-free bond holding of which the price is q = q(X). The bond price is compet-

itively determined at the bond market. Apostrophe indicates future allocation. σ is risk-aversion

parameter; χ is the Frisch labor elasticity; η is the labor disutility parameter; β is the discount

factor. b ≤ 0 is the borrowing limit for future bond holding, and future risky asset is bound by

zero borrowing limit.

The aggregate state X is defined as follows:

X := {Φ, A} (44)

where Φ is the joint distribution of the individual states; A is aggregate productivity that follows

the same two-state Markov chain as in Krusell and Smith (1997). The rest of the model ingredients

are identical to the leading application I (Section 6.1) except for the following bond market clearing

condition: The bond price qb(X) is determined at the competitive market as follows:

[q] :

∫
b′(ω, z;X)dΦ(X) = 0 (45)

where I assume the aggregate net bond supply is zero as in Krusell and Smith (1997). I use the

standard parameter levels in the literature, which are available in Appendix C.

The model includes two inter-temporal assets, which necessarily leads to a highly complex

endogenous aggregate state in equilibrium. Moreover, the model includes two occasionally binding

constraints and the two non-trivial market clearing conditions for labor and bond market, which

exponentially increases the computational burdens. Nevertheless, the RTM efficiently computes
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the global solution.

The first-order conditions lead to two inter-temporal optimality conditions:

[Risky asset] :
1

c(k, z;X)
= βEz,X

[(
1

c(k′, z′;X ′)

)
(1 + r(X ′))

]
+ λ(k, z;X) (46)

[Safe asset] :
1

c(k, z;X)
= βEz,X

[(
1

c(k′, z′;X ′)

)]
+ ψ(k, z;X) (47)

where λ and ψ are Largrange multipliers for risky and safe assets’ borrowing limit conditions,

respectively.

I take the sufficient statistic approach in Section 3.1, using the aggregate capital stock K(X) -

the first moment of the individual risky asset distribution - as the sufficient statistic. I validate this

approach by checking the monotonicity condition of Proposition 1 for both of the inter-temporal

optimality conditions (46) and (47), as reported in Figure 6. Panel (a) and (b) are scatter plots of

aggregate capital stock in the horizontal axis and the marginal values in the optimality condition

in the vertical axis for different aggregate productivity realizations, given the median levels of

individual wealth and labor productivity.27 According to panel (a), the marginal value of the

risky asset strictly monotonically decreases in aggregate capital K for each aggregate productivity,

validating the sufficient statistic approach. Similarly, panel (b) reports the strict monotonicity for

the safe asset. To systematically analyze the monotonicity, I compute the Spearman’s coefficient

between the sufficient statistic and the marginal value for each combination of individual states and

exogenous aggregate states. From this analysis, I confirm that the minimum coefficients among all

combinations for both optimality conditions are distant from unity by 10−5. The averages are not

distinguishable from unity, and the standard deviations are around 10−6. Thus, the monotonicity

property holds robustly across the entire cross-section of the individual states.

The bond market presents a unique computational challenge beyond standard market clearing

issues: zero net supply (B′(X) = 0) creates difficulties in characterizing the implied bond price

using the RTM. The clearing condition reduces to a non-invertible identity: qb(X) × B′(X) =

B ⇐⇒ qb(X)× 0 = 0. This challenge becomes apparent when examining the national accounting

27As required by Proposition 1, the monotonicity needs to be checked for each individual state, which differs from
the monotonicity along an individual’s simulated state path.
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(a) Risky asset’s inter-temporal optimality
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(b) Risk-free asset’s inter-temporal optimality

Figure 6: Strict monotonicity of the marginal values in the aggregate capital stock

Notes: The figures are scatter plots of the marginal value functions in the vertical axis and the average capital as a
sufficient statistic in the horizontal axis for different exogenous aggregate states (different panels) given the median
level of individual wealth and productivity levels. Panel (a) is for the marginal value of the risky asset, and panel
(b) is for that of the risk-free asset.

identity derived from aggregating individual budget constraints:

C(X) +K ′(X) + qb(X)B′(X) = K(1 + r(X)) +B + w(X)N (48)

⇐⇒ C(X) + I(X) + qb(X)B′ −B = Y (X) (49)

=⇒ qb(X)B′ = B ⇐⇒ qb(X)× 0 = 0, (50)

where (C,K, I, Y,B) are aggregate consumption, capital stock, investment, output, and bond hold-

ings. To overcome this computational challenge, I introduce a dummy bond term B > 0, which

remains fixed over the iterations. The dummy bond serves as a reference point for relative price

updates. Specifically, this allows characterization of the implied price qb∗ through

qb∗t B := Y
(n)
t − C∗

t − I∗t +B∗
t − q

b(n)
t B =⇒ qb∗t =

Y
(n)
t − C∗

t − I∗t +B∗
t − q

b(n)
t B

B
, (51)

where asterisks denote aggregations of individual optimal choices given the nth iteration’s guessed

price path.28 Through iteration, this approach achieves two convergence results: the implied bond

price sequence {qb∗t }Tt=0 converges to market-clearing levels, and the aggregate net bond supply

B∗
t =

∫
b∗tdΦ converges to 0 for ∀ t.29

28Appendix E explains the details of the role of the dummy bond variable.
29The equilibrium path shows high sensitivity to bond price adjustments, necessitating conservative updating

(weight = 0.999) in the implementation. An alternative specification for the implied bond price is qb∗t =
B

(n)
t+1−q

b(n)
t B

B
,

which also leads to the convergent outcomes.
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6.2.1 Nonlinear bond price and heterogeneous portfolio adjustment over the business

cycle

The RTM computes the equilibrium paths of the price bundle (r(X), w(X), q(X)). Among

the prices, the bond price dynamics is particularly nonlinear, as can be seen from Figure 7. The

predicted path (solid line) and the realized path (dash-dotted line) are indistinguishably close,

which demonstrates the solution’s accuracy. Its dynamics significantly deviate from the log-linear

prediction (dotted line) based on the sufficient statistic K(X). The fitted line’s R2 is only around

0.50, underscoring the inadequacy of linear approximations.

This finding has important implications for solution methods. The bond price’s true law of

motion is too complex for conventional state-space approaches, which would require correctly spec-

ifying the functional form before solving the model. Yet notably, despite this complexity in price

dynamics, the inter-temporal optimality conditions maintain strict monotonicity in the sufficient

statistic K, as demonstrated in Figure 6. This result demonstrates a key advantage of the RTM: its

sufficient statistic approach remains valid even when linear prediction rules fail, enabling accurate

solutions to models with complex nonlinear dynamics without requiring explicit functional forms.

The heterogeneous agent model generates bond price dynamics that sharply contrast with repre-
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Figure 7: The equilibrium bond price path

Notes: The figure plots the time series of the bond price qbt in the extended model of Krusell and Smith
(1997). The solid line is the predicted bond price (nth guess) {qb(n)

t }800t=500. The dashed line is the implied
bond price {qb∗t }800t=500. The dotted line is the bond price predicted by the linear law of motion.

sentative agent predictions.30 The difference manifests in both cyclicality and volatility. While

30In the representative agent model, the bond price is derived from the inverse of the risk-free rate. This remains
an implied price since the zero net bond supply precludes actual transaction by the representative agent.
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the heterogeneous agent model predicts pro-cyclical bond prices (corr(Yt, q
b
t ) = 0.64), while the

representative agent framework implies counter-cyclical prices (corr(Yt, q
b
t ) = −0.43). The volatil-

ity difference is also striking: the heterogeneous agent model produces bond price volatility more

than 9 times greater than its representative agent counterpart. These substantial differences stem

from the rich heterogeneity in households’ hedging motives across individual states, an equilibrium

feature that representative agent models necessarily abstract from.

The global nonlinear solution of the model reveals a novel prediction about heterogeneous

portfolio adjustment across households. Figure 8 illustrates this heterogeneity by tracking the

household-level average of the risky asset weight in the portfolio for two groups: high-productivity

households (defined as those in the top tercile of the productivity distribution) and low-productivity

households (those in the bottom tercile), plotted against output deviations from steady state.

Both groups’ households display counter-cyclical portfolio adjustments, increasing their risky

asset allocations with a one-period lag relative to output fluctuations. However, the magnitude of

these adjustments differs markedly across productivity levels: low-productivity households exhibit

substantially more aggressive rebalancing behavior, with portfolio volatility more than 4 times

greater than that of high-productivity households.
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Figure 8: The equilibrium paths of risky asset portion: high vs. low productivity households

Notes: The figure plots the time series of the risky asset portion (%) in the wealth portfolio for different households
in the extended model of Krusell and Smith (1997). The solid line represents households in the top productivity
tercile, while the dashed line shows households in the bottom productivity tercile. The dotted line depicts output
(measured as percentage deviation from steady state), with values shown on the secondary vertical axis at the right
side of the figure.

The group-level total asset composition dynamics are also starkly different. Figure 9 contrasts

the asset holdings of high and low productivity groups against output deviations from steady state,
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with panel (a) showing risky asset holdings and panel (b) displaying risk-free asset positions. Panel

(a) demonstrates that low productivity households maintain larger risky asset positions than their

high productivity counterparts, with more pronounced pro-cyclical variation. Panel (b) reveals the

financing strategy behind these positions: low productivity households achieve their large risky

asset holdings through aggressive leverage, maintaining risk-free borrowing positions consistently

near the constraint (b = −2.4). In contrast, high productivity households hold large and stable

risk-free asset positions throughout the business cycle.

These patterns offer important insights for both inequality dynamics and asset pricing theory.

The RTM solution reveals how the bond market mediates heterogeneous hedging motives across

household types, generating highly nonlinear and volatile bond prices. This interaction between

household heterogeneity and financial markets provides new perspectives on both inequality trans-

mission and asset pricing mechanisms.
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(a) Risky asset dynamics
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(b) Risk-free asset dynamics

Figure 9: Risky and risk-free asset dynamics: high and low productivity

Notes: The figure plots the time series of the different asset holdings ($) by household types in the extended model
of Krusell and Smith (1997). Panel (a) is for the risky asset, and panel (b) is for the risk-free asset. The solid
line represents households in the top productivity tercile, while the dashed line shows households in the bottom
productivity tercile. The dotted line depicts output (measured as percentage deviation from steady state), with
values shown on the secondary vertical axis at the right side of the figure.

7 Concluding remarks

This paper develops the repeated transition method (RTM), a powerful approach for solving dy-

namic stochastic general equilibrium models that achieves both global accuracy and computational

efficiency. Working in sequence space, the method delivers dynamically consistent solutions while

maintaining implementation simplicity without assuming perfect foresight. The RTM’s funda-

mental innovation lies in computing conditional expectations by combining realized equilibrium

outcomes, eliminating the need for parametric approximations of laws of motion.

A central theoretical contribution of this paper is establishing precise conditions under which
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sufficient statistics deliver exact solutions in models with complex aggregate states. This advance

provides researchers with a rigorous foundation for dimensional reduction in sophisticated economic

models, supported by readily testable conditions. The method’s ability to accurately capture

nonlinear dynamics without relying on specific functional forms represents another key advancement

in solving modern macroeconomic models.

The applications in this paper demonstrate the practical value of these methodological advances.

By accurately capturing nonlinear dynamics and state-dependent relationships, the RTM reveals

important insights about fiscal policy effectiveness and heterogeneous portfolio choice behavior that

might be missed by traditional solution methods. This capability opens new possibilities for inves-

tigating complex economic relationships and policy effects in modern macroeconomic models.
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A Appendix: proposition and proof

Proposition 1 (The qualification for the sufficient statistic).

For a sufficiently large T , if there exists a time series of a variable {et}Tt=0 such that for each time

partition TS = {t|St = S}, ∀S ∈ {B,G} and for ∀(a, s),

(i) eτ0 < eτ1 ⇐⇒ Vτ0(a, s) < Vτ1(a, s) for any τ0, τ1 ∈ TS

or

(ii) eτ0 < eτ1 ⇐⇒ Vτ0(a, s) > Vτ1(a, s) for any τ0, τ1 ∈ TS ,

then et is the sufficient statistic of the endogenous aggregate state Φt for ∀t. That is,

ESV (x; Φ′, S′) =

∫
V (x; Φ′, S′)dΓS,S′ =

∫
Vτ̃(S′)+1(x)dΓS,S′

where τ̃(S′) + 1 = arg infτ∈TS′ ||eτ − et+1||∞.

Proof.

Given the recessivity of the recursive competitive equilibrium over the sufficiently long path, there

exists τ̃(S′) + 1 with unit probability such that et+1 = eτ̃(S′)+1.

Then, it is sufficient to show that the following equivalence holds:

{t ∈ TS |et = eτ} = {t ∈ TS |Φt = Φτ} for ∀τ and ∀S ∈ {B,G},

as it implies that V (x; Φ, S′) = Vt(x) if Φ is from the set in the right-hand side of the equation and

t is from the left-hand side.

First, the following direction holds:

{t ∈ TS |et = eτ} ⊇ {t ∈ TS |Φt = Φτ} for ∀τ and ∀S ∈ {B,G}.

It is because if two periods share the same aggregate states (both endogenous and exogenous), the

level of the time-specific value function is the same. This implies, et̃ = eτ . That is,

For ∀t̃ ∈ {t ∈ TS |Φt = Φτ}, Vt̃ = Vτ =⇒ For ∀t̃ ∈ {t ∈ TS |Φt = Φτ}, et̃ = eτ .

Otherwise, the strict monotonicity condition (i) or (ii) is violated.
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Second, we need to show

{t ∈ TS |et = eτ} ⊆ {t ∈ TS |Φt = Φτ} for ∀τ and ∀S ∈ {B,G}.

From the monotonicity condition, the following is true:

For ∀t̃ ∈ {t ∈ TS |et = eτ}, Vt̃ = Vτ for ∀τ and ∀S ∈ {B,G}.

Then, it is sufficient to show that

Vt̃ = Vτ =⇒ Φt̃ = Φτ .

Suppose it is not true. Then, there exists t̃ such that

Vt̃ = Vτ and Φt̃ ̸= Φτ .

This contradicts to the assumed non-redundancy of the aggregate state and equilibrium uniqueness

in Section 2.2. Therefore, the following holds:

For ∀t̃ ∈ {t ∈ TS |et = eτ}, Φt̃ = Φτ .

This implies

{t ∈ TS |et = eτ} ⊆ {t ∈ TS |Φt = Φτ}

for any τ and S ∈ {B,G}.

■
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