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Abstract

This paper develops a highly accurate and efficient global nonlinear solution method

for dynamic stochastic general equilibrium models in the sequence space. The method

updates the predicted equilibrium path using the whole sequence of realized allocations

in the past iteration based on the accurate conditional expectation in each period,

sharply satisfying the dynamic consistency. Neither a parametric law of motion nor

parametrized expectation is necessary for the implementation. The method applies

to a wide range of models with and without micro-level heterogeneity. Moreover, it

allows theoretical characterization of the conditions under which a sufficient statistic

approach can be used for complex aggregate states, including distributions. Despite

its simple implementation, the computation is highly efficient, bypassing fixed-point

problems in each iteration, including non-trivial market clearing conditions.
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1 Introduction

How can we accurately compute the global solution of the dynamic stochastic general

equilibrium (DSGE, hereafter) models? This is a fundamental question in macroeconomic

studies, and its answer is crucial for quantifying the impacts of economic policies in a DSGE

model. This paper proposes a method to solve DSGE models globally in the sequence space.

This method is accurate, fast, applicable to a broad class of models, and easy to implement.

Moreover, this method provides a novel angle on how a sufficient statistic can be used to

solve DSGE models with complex aggregate states, possibly including infinite-dimensional

objects. Despite its importance and usefulness for effectively summarizing aggregate states,

the conditions under which such a sufficient statistic approach is suitable for solving models

remain an open question. This paper bridges the gap by theoretically characterizing the con-

dition for using sufficient statistics in implementing the new solution method. The method

is flexibly applicable to standard macro models with and without micro-level heterogeneity.

In particular, it is useful for solving models with substantial nonlinearities in aggregate fluc-

tuations, as the method does not rely on a (potentially misspecified) parametric form of the

aggregate law of motions.

The key idea of the method is to accurately compute the sequence of the conditional

expectation of economic agents in a model. In particular, the method, which I name the

repeated transition method (RTM, hereafter), utilizes the ergodicity of DSGE models. That

is, if the simulated path of a stationary aggregate shock process is long enough, all the

possible equilibrium allocations of a model should be realized. This observation suggests

that state-contingent future allocations are obtainable somewhere on the simulated path

as a realized equilibrium outcome. Then, by properly identifying the period that has the

corresponding outcome to each expected future state, an agent’s conditional expectation

can be completely characterized at any period on the simulated path. When identifying the

corresponding periods for an expected future outcome, however, it is not necessary to specify

a law of motion (transition equation) or parameterized expectation. Instead, the RTM only

requires a metric of similarity among the aggregate states across the periods.
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For example, suppose an agent’s infinite-horizon dynamic problem at period t. A re-

searcher needs to come up with an expected value (policy) function of period t+1. Consider

a simple case with two possible realizations of exogenous aggregate state: G (Good) or B

(Bad). For each exogenous state s ∈ {G,B} in t+1, the RTM finds a period on the simulated

path in which the endogenous aggregate state is the most similar to the one in period t+ 1,

and the aggregate shock realization is s. Then, it combines the time-specific value (policy)

functions from these two periods to construct the expected future value (policy) function of

period t + 1. Due to the ergodicity of a long enough simulation, there almost surely exists

such a period where the endogenous aggregate allocations (e.g., the distribution of individual

states) are identical to the ones in period t+1 among the periods with the shock realization

s. Therefore, the expected future value (policy) function at each period can be accurately

constructed by combining the time-specific value (policy) functions.1

During its implementation, the method iteratively updates the predicted allocation path

by using the realized allocation path in the sequence space until they converge to each other.

To be specific, the identifying step of the similar periods and the computation step of the

conditional expectation are based on the allocation path from the last iteration (predicted

path). I then update the predicted path of the next iteration based on the realized allocation

implied by the predicted path of the current iteration. Therefore, each iteration passes

over the information of the whole sequence of the realized allocations to the next iteration,

utilizing the maximal set of information regarding the transition dynamics. This is in stark

contrast with the existing approaches based on state space, where the transitional dynamics

are summarized by a functional relationship between the current and the future states.

Abstracting such parametric relationships, on the other hand, the RTM accurately computes

the equilibrium dynamics even for highly nonlinear models. Further, the required simulation

length for the RTM is not longer than the existing methods, as the updating scheme efficiently

utilizes the full information about the dynamics, minimizing the waste of information per

marginal increase in the number of periods in a simulation.

When a model includes heterogeneous agents or multidimensional endogenous aggregate

1As explained in the main text, the method utilizes repeated transitions between the same (similar)
endogenous states with different exogenous states, so the method is named based on this computation step.
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states, the step to compare such high-dimensional objects across the periods can be a com-

putational bottleneck.2 For this, I suggest an approach of utilizing a sufficient statistic and

provide a theoretical condition for obtaining the exact solution. Specifically, when the time-

specific value (policy) functions on a simulated path are strictly monotone in an aggregate

equilibrium allocation given individual and exogenous aggregate states, the aggregate alloca-

tion can be used as a sufficient statistic, and it leads to the exact solution. In this approach,

the allocation (sufficient statistic) plays a role as an indexing function of the value (policy)

function’s ranking across the time.3

In contrast to the sufficient-statistic approaches proposed by Krusell and Smith (1997,

1998), which utilizes the statistic to summarize the law of motion in a parametric form,

the RTM uses sufficient statistics to identify the target period with the same statistic level

(ranking) for forming the expected value (policy) function. Thus, the RTM does not assume

a specific (parametric/non-parametric) functional form of the law of motion, as the whole

sequence of the realized sufficient statistics is utilized to update the predicted path. This

achieves the convergence of the predicted and realized allocation paths in the sequence space,

instead of the convergence of the coefficients in the functional form of a law of motion or the

fixed point in a transition equation. Therefore, the model solution from the RTM is highly

accurate in terms of dynamic consistency.

In terms of computation speed, the RTM substantially outperforms the method of Krusell

and Smith (1997), especially when a model features period-by-period fixed-point problems

such as non-trivial market-clearing conditions. In Krusell and Smith (1997), the market

needs to be cleared in each period on the model’s simulated path to make the updated

coefficients of the law of motion converge to the true level. This step requires extra loops in

the algorithm, significantly delaying the convergence. In contrast, the RTM does not require

solving the fixed-point problem for each period. Instead, it computes the period-specific

aggregate allocation (price) implied by the fixed-point problem (market clearing condition)

2Saving and updating the sequence of the distributions are also computationally burdensome tasks.
3The existence of such indexing allocation is an important issue. However, the theoretical investigation of

the existence is beyond this paper’s scope. The author conjectures that the first moment of the endogenous
individual state’s distribution serves as a sufficient statistic if all individual inter-temporal policy functions
are weakly monotone in each exogenous state, and the strict monotonicity holds for non-zero measures of
individuals in any aggregate state realizations, as evidenced by several applications provided in the online
appendix. I leave the further theoretical investigation of the existence for future research.
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rather than the exact fixed point. Then, it updates the allocation (price) path using the

implied level, as it does for the other predicted allocation path. Therefore, the method

bypasses the solution step for the fixed-point problems along the simulation path over the

iteration. Nonetheless, as the iteration goes by, the implied allocation path converges with

the sequence of the fixed points. This convergence is not due to the specialty in the RTM but

due to the stability and the uniqueness of the recursive competitive equilibrium of a model.

The RTM, hence, fully utilizes such characteristics of equilibrium that a model features in

its nature.4 In a standard heterogeneous-firm models such as Khan and Thomas (2008),

the computational advantage is more pronounced, since the market clearing price is not

characterized in a closed form. According to my computation of the model in Khan and

Thomas (2008), the speed gain of the RTM can be more than 10 times.

In addition to the efficiency in computation, the RTM can be used in a broad class of

DSGE models. An example is an extended version of the model in Krusell and Smith (1998),

in which an individual household endogenously chooses the quantity of labor supply given

an aggregate uncertainty shocks (Bloom et al., 2018). I show that the RTM leads to an

accurate solution, in the presence of infinite-dimensional aggregate state, non-trivial market

clearing condition, occasionally binding constraints, and uncertainty shock in the model. I

also validate that the sufficient statistic approach by testing the monotonicity condition.

To illustrate the applicability of the method, the sample codes for various applications are

provided in the Online Appendix.5

The leading application of the method in this paper studies the real business cycle (RBC,

hereafter) model with irreversible investment in two different cases: a representative-firm case

and a heterogeneous-firm case.6 The irreversibility of investment is grounded in the empirical

4The convergence is not guaranteed if an equilibrium does not feature stability and uniqueness. However,
the computational difficulty arising from not having these natures is not specific to the repeated transition
method.

5Also, Lee et al. (2024) applies the RTM to Diamond-Pissarides-Mortensen (DMP) models with exoge-
nous and endogenous job separation to analyze nonlinear labor market dynamics. The RTM also solves
nonlinear New Keynesian models globally and accurately. Lee and Nomura (2024) applies the method to
analyze the nonlinear inflation dynamics through the lens of a canonical Calvo pricing model. Likewise,
the method’s applicability to the broad class of nonlinear models enables equilibrium-based analysis on the
state dependence (or history dependence), which is directly comparable to the observed state dependence
(Pizzinelli et al., 2020)

6In online appendix, I provide multiple applications of the methodology including an extension of Krusell
and Smith (1998) with an endogenous labor supply and aggregate uncertainty, the model of Khan and
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observation and generates highly nonlinear aggregate dynamics in the model (Bertola and

Caballero, 1994). However, the quantitative significance of the investment irreversibilities

has been contested by Veracierto (2002) in a general equilibrium environment. I revisit this

debate based on the new solution method for a canonical model. In the model, a firm cannot

flexibly adjust its size because of the investment lower bound as in Guerrieri and Iacoviello

(2015).7 This constraint is occasionally binding and hence generates highly nonlinear dy-

namics of capital even in the model with a representative firm. The solution of the model was

extensively studied in the literature, so I begin with comparing the performance of the RTM

for this representative firm case with those of the existing methods. For the comparison,

I consider two recently developed methods: the OccBin toolkit by Guerrieri and Iacoviello

(2015) and the GDSGE toolkit by Cao et al. (2023). The RTM outperforms these methods

in terms of accuracy with respect to dynamic consistency at a similar computation speed.8

Next, I illustrate the computation of the heterogeneous-firm business cycle model with

irreversible investment. In this model, firms are subject to persistent idiosyncratic produc-

tivity shocks and irreversibility constraints, leading to highly nonlinear capital dynamics

at the firm level. Due to such micro-level nonlinearity, it is difficult to specify the correct

aggregate law of motion in the state space approach.9 On top of this, a non-trivial market

clearing condition for the labor market in the model adds another layer of computational

hurdle. I confirm that the RTM quickly delivers an accurate solution of the model, when

compared to other methods.

Lastly, my applications of the global solution method in this paper further highlight the

quantitative importance of micro-level nonlinearities in shaping macroeconomic outcomes.

In one of the leading applications above, the nonlinearity makes the aggregate dynamics

in the heterogeneous-firm model substantially deviate from those of the representative-firm

model.10 In particular, the volatilities of investment and output are significantly greater in

Thomas (2008), and variations of the real business cycle models. I briefly discuss them in the main text.
7An alternative way to capture these firm-level capital dynamics is to include costly reversibility as in

Abel and Eberly (1996).
8The repeated transition method does not rely on external source codes in a lower-level computational

language such as C++. The sample codes are all based on MATLAB.
9The nonlinear micro-level dynamics do not always result in the nonlinear aggregate dynamics as studied

in Khan and Thomas (2008).
10The deviation arises despite the same parameter levels shared by the two models, except for the idiosyn-
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the heterogeneous-firm model. In contrast, these differences in aggregate dynamics com-

pletely disappear when the occasionally binding constraint is lifted in the model. It follows

that the nonlinearity at the micro level, which stems from the occasionally binding constraint,

causes the aggregate dynamics to be more volatile and nonlinear.

To summarize the advantages of the repeated transition method, 1) it computes the

accurate global DSGE solution even for highly nonlinear models including the ones with

occasionally binding constraints; 2) it achieves high computational efficiency by bypassing

the period-by-period fixed point problem in model simulation; 3) a nonlinear model with

complex endogenous aggregate states (e.g., heterogeneous-agent models) can be solved using

the sufficient statistic approach, and the validity of the approach can be tested based on a

theory; 4) multiple aggregate shocks can be easily accommodated; 5) the implementation is

simple and does not rely on any external source code.11

Related literature One of the most popular global solution algorithms is the state space-

based approach using a parametric law of motion developed by Krusell and Smith (1997,

1998). While the methods of these papers are powerful in solving models with linear aggre-

gate dynamics, they often fail to solve models with nonlinear dynamics due to the difficulty

in correctly specifying the law of motion. Then, the computation of the conditional ex-

pectations of future value (policy) functions is possibly inaccurate, leading to a dynamic

inconsistency in the computed equilibrium path. Alternatively, the method of parametrized

expectation by Marcet (1988) and den Haan and Marcet (1990) compute the conditional

expectations of future variables using the parametrized function and finding the optimal

parameter levels of approximation. Den Haan and Rendahl (2010) characterizes the law of

motion by explicitly aggregating the Taylor-approximated individual policy functions, which

can handle the nonlinear law of motion. These methods approximate the conditional ex-

pectation based on a combination of the basis functions. In contrast, the RTM computes

cratic productivity.
11All the sample codes are written in MATLAB, but the computational efficiency is still at the top-notch,

which will be discussed in Section 5. Regarding this point, there is room for the prototype RTM to be
further improved by adopting the recent machine learning and deep learning techniques (Han et al., 2021;
Azinovic et al., 2022; Fernández-Villaverde et al., 2023), the adaptive sparse grids (Winschel and Krätzig,
2010; Brumm and Scheidegger, 2017), and the lower-level computing languages as in Cao et al. (2023). I
leave this possibility to future research.
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the conditional expectation without a functional fitting or approximation by identifying the

period with each possible future state realization and combining the value or policy functions

in the identified period. This is by utilizing the ergodicity of the DSGE models.

The global solution methods developed by Cao et al. (2023) and Elenev et al. (2021) are

closely related to the RTM. Their methods solve the transition equation and the individual

policy function simultaneously on the state space, which efficiently achieves dynamic consis-

tency. Then, the transition equation is updated by the implied dynamics as in the RTM. In

solving the transition equation, a functional fitting or approximation is a necessary step if

there is no explicit form of the transition equations. In contrast, the RTM does not require

such steps, as the whole realized equilibrium path is utilized for updating transition dynam-

ics on the sequence space without fitting or approximating the inter-temporal transitions,

leading to a high degree of efficiency and accuracy in the solution. Other computational

gains of the RTM, including the speed gain for the non-trivial market clearing conditions,

are investigated further in detail in the following sections.

My paper’s new methodology builds upon the recent development in the solution method

in the sequence space by Auclert et al. (2021), which utilizes the sequence of Jacobians to

compute the equilibrium path. Their methodology features high speed by efficiently reducing

the number of computation steps, enabling rapid likelihood-based estimation. However, the

method assumes perfect foresight, while the RTM does not require the assumption. Specif-

ically, my method accurately recovers the expected future outcomes at each period under

the aggregate uncertainty. Therefore, the RTM is distinguished from the other computation

methods with perfect foresight (Fair and Taylor, 1983; Juillard, 1996; Judd, 2002; Cai et al.,

2017; Boppart et al., 2018).

Also, it directly computes aggregate allocations and market-clearing prices in each period

on the simulated path without specifying the law of motion. Therefore, the RTM is distin-

guished from the solution methods based on perturbation and linearization (Reiter, 2009;

Boppart et al., 2018; Ahn et al., 2018; Winberry, 2018; Childers, 2018).

The RTM is also related to the simulation-based approach of Judd et al. (2011) and

Maliar et al. (2011). Their method solves a model only in the realized ergodic state space

in the equilibrium. This method significantly saves computation time, as it focuses only
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on a part of the entire state space. On top of this gain, the RTM utilizes the information

contained in the realized state space to form the agent’s rational expectation in each period

on the simulated path, which significantly improves the accuracy of the solution.

As the RTM utilizes a single path of simulated aggregate shock that is long enough to

represent the stochastic process completely, the approach is related to Kahou et al. (2021).

Kahou et al. (2021) utilizes the fact that a whole economy’s dynamics can be characterized

by solving a finite number of agents’ problems on a single Monte Carlo draw of individual

shocks under the permutation-invariance condition. Then, the law of motion is computed

using the deep-learning algorithm.

Roadmap Section 2 explains the repeated transition method. Section 3 explains the

sufficient statistic approach. Section 4 explains how the RTM bypasses non-trivial market

clearing conditions. Section 5 validates the accuracy and the speed of the RTM through a

comparison with the existing methods in the literature. Section 6 explains the application

to a leading example. Section 7 concludes.

2 The repeated transition method

2.1 A generic model framework

To explain the repeated transition method, I introduce a generic model framework that can

nest a broad class of general equilibrium models. I denote the individual state as x and the

aggregate state as X. The individual state x is composed of the endogenous individual state

a and the exogenous individual state s (the idiosyncratic shocks). The aggregate state X is

composed of the endogenous aggregate states Φ and the exogenous aggregate state S (the

aggregate shocks). Φ can be a distribution of the individual states x in a heterogeneous-agent

model or a set of aggregate allocations in a representative-agent model. For comprehensive

explanation, I refer to Φ as the distribution of the individual states, which is an infinite-
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dimensional object.

[Individual state] : x = {a, s}

[Aggregate state] : X = {Φ, S}

The idiosyncratic and aggregate shock processes are assumed to follow a Markov process

represented by a transition matrix Πs and ΠS, respectively. I denote the value function as V .

All the variables with an apostrophe indicate the variables of the future period. The objective

function of an economic agent is composed of the contemporaneous part f(y, x′, x;X) and

the expected future value. The agent maximizes the objective function by choosing (y, a′),

where y is a vector of control variables that affects only the contemporaneous period. Then,

the recursive formulation of an agent’s problem is as follows:

V (x;X) = max
y,a′

f(y, a′, x;X) + Em(X,X ′)V (a′, s′;X ′)

s.t. (y, x′) ∈ B(x;X,X ′, q), Φ′ = F (X)

where m(X,X ′) is the stochastic discount factor; q(X,X ′) is a price bundle;

B(x;X,X ′, q) is the budget constraint; F (X) is the law of motion known to to an individual

agent.12 I denote the combined price bundle (m, q) as p. The following market clearing

condition pins down the price p:13

[Market clearing] : p(X,X ′) = argp̃{QD(p̃, X,X ′)−QS(p̃, X,X ′) = 0},

where QD and QS are the functions of demand and supply, which are endogenously deter-

mined by the model. For simplicity of the illustration, I assume the aggregate shock S can

take two possible values {G,B}, and the transition matrix ΠS is a 2× 2 matrix.14

12The stochastic discount factor can be a constant, for example β, as in a canonical dynamic household’s
problems. In a dynamic firm problem, the stochastic discount factor needs to be included.

13Any period-specific fixed point problem can be considered in the repeated transition method. For brevity,
I only include the non-trivial market clearing condition.

14The applicability of the repeated transition method is not limited to a certain number of grid points for
the aggregate shocks. The choice of two grid points is purely for an easy illustration. Moreover, multiple
aggregate shocks can be considered as an exogenous state. In the online sample code, I include the application
for the RBC model with both the aggregate TFP shock and convex adjustment cost shock. Similarly, an
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The generic model framework nests the cases where the value function and the constraint

allow the analytical expression of the first-order optimality conditions. In such cases, the

first-order conditions and the envelope condition are characterized as follows:

[a′] : − ∂f

∂a′
= Em(X,X ′)

∂V

∂a′
+ λ

∂

∂a′
B

[y] : − ∂f

∂y
= Em(X,X ′)

∂V

∂y
+ λ

∂

∂a′
B

[a] :
∂V

∂a
=
∂f

∂a
+ λ

∂

∂a
B

where the lagrange multiplier λ satisfies the slackness condition. In the following sections,

I explain the method based on the recursive form in value functions for a comprehensive

explanation. However, the method is seamlessly applied even if the value function is replaced

by the first-order derivative or the policy functions in the explained algorithm below. In

the Online Appendix, I provide multiple applications where the expected policy function is

computed instead of the expected value function.

The repeated transition method achieves convergence on the sequence space. Therefore,

despite the converged equilibrium allocations being fully describable in a recursive form, I

denote the equilibrium object in a sequential expression, such as {Vt}, for the sake of a

coherent explanation. Hereafter, given a realized state {xt, Xt} for an individual (or repre-

sentative) agent in a given period t, the value function in the sequential expression Vt and

the value function in the recursive form V (xt;Xt) are interchangeably used.

2.2 Assumptions

In this section, I discuss the necessary features of the models for the application of the

repeated transition method. The method relies on the a) stability and the b) uniqueness of

the equilibrium. If a model violates these two conditions, it is hard to expect the convergence

of the method. Also, the c) ergodicity of the equilibrium is a necessary condition. That is,

equilibrium allocations are recurrent and aperiodic on the infinitely long simulated path in

the equilibrium. Without ergodicity, there is a set of equilibrium allocations in a period that

aggregate uncertainty shock can be incorporated on top of the aggregate TFP shock.
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will never become an equilibrium allocation again in the following periods. In this case, the

computation of the expectation of such allocations is not feasible in the repeated transition

method.15 From this point on, I focus only on the models that satisfy these three conditions.

2.3 Intuition behind the method

I start from explaining the basic structure of the methodology. Suppose I simulate T

periods of aggregate exogenous state {St}Tt=0, and hypothetically the simulated path is long

enough to make almost all the possible equilibrium allocations happen on the simulated

path.16 Then, I start from guessing the following three time series: 1) value functions,

{V (0)
t }Tt=0, 2) distributions of individual states {Φ

(0)
t }Tt=0, and 3) prices {p(0)t }Tt=0. Using these

guesses, I solve the allocations backward from the terminal period T to obtain the implied

value function solution {V ∗
t }Tt=0, and simulate the economy forward using the solution. The

forward simulation generates the time series of the distribution of individual states {Φ∗
t}Tt=0

and prices {p∗t}Tt=0 from the market-clearing conditions. Using these, I update the guess to

move on to the next iteration, {V (1)
t ,Φ

(1)
t , p

(1)
t }Tt=0. The entire structure of the algorithm looks

similar to the perfect-foresight solution method (Fair and Taylor, 1983), but the backward

solution step is sharply distinguished.

To clarify this point, suppose that I’ve run the nth iteration and that I am now at the

(n+1)th iteration at period t after solving the problem backward from the terminal period T

until period (t+1). On the simulated aggregate state path, suppose that the exogenous state

realization at period t+1 is G: St+1 = G. For the problem of an agent at t, a macroeconomist

needs to construct an expected future value function denoted as EtṼt+1.
17 However, this is

a difficult task because only Vt+1(·, S = G) is available from the backward solution, while

Vt+1(·, S = B) is not. This is natural as only one exogenous aggregate state can be realized

in a period. I define this unobserved values Vt+1(·, S = B) as a counterfactual conditional

value function.

15It is also conceptually challenging to let an agent form the expectation of such allocation.
16In theory, an infinitely long simulation needs to be considered, but for illustrative purposes, I consider a T -

period long simulation. Later in the application, a long-enough finite simulation is used as an approximation
for the infinitely long ergodic simulation.

17The rational expectation is not necessary for the application of the methodology. As long as the specific
form of the expectation is given, the step for computing the conditional expectation can be flexibly adjusted.
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In the standard state space-based approach, this problem is handled by replacing the

time index with the endogenous and exogenous aggregate states and by interpolating the

endogenous states using the assumed law of motion. Therefore, the accuracy of the specified

law of motion strongly affects the accuracy of the solution. However, before obtaining the

solving the equilibrium, it is hardly known whether the law of motion is correctly specified

or not. Then, if the law of motion turns out to be incorrect, a researcher needs to restart

solving the problem from scratch, coming up with a new guess about the law of motion. The

proper guess is difficult to obtain, as there is an infinite degree of freedom in the new guess.

In particular, there are two types of difficulties in this step. One is about which statistics to

include in the law of motion; the other is about what functional forms to choose for the law

of motion. Unless the aggregate dynamics are well-known to be log-linear, as in Krusell and

Smith (1998), this problem cannot be easily resolved.

Then, the repeated transition method takes a different route where the counterfactual

conditional value function is obtained from the value function of another period t̃+1 in which

the endogenous aggregate state is exactly the same as the period t+1, but the counterfactual

exogenous state is realized:18

Φ
(n)

t̃+1
= Φ

(n)
t+1

St̃+1 = B ̸= G = St+1.

Then, all the aggregate states of the realized state of period t̃ + 1 are identical to the ones

in the counterfactual state of period t+ 1. Thus, the following equation holds:

V
(n)

t̃+1
(·, S = B) = V

(n)
t+1(·, S = B).

Importantly, V
(n)

t̃+1
(·, S = B) is the observed factual conditional value function available in the

nth iteration. As both V
(n)
t+1(·, S = G) and V

(n)
t+1(·, S = B)(= V

(n)

t̃+1
(·, S = B)) are available (nth

iteration outcome), the expected future value function EtṼt+1 can be consistently computed.

Even when the aggregate shock process is discretized finer than two grid points, the rationally

18Note that the counterfactual conditional value function is obtained from the nth guess.
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expected future value function can be obtained using the same procedures.19 Due to the

ergodicity of the dynamic stochastic general equilibrium, if a simulated path is long enough,

the existence of such period t̃+ 1 is almost surely guaranteed.

In this new approach, a law of motion does not need to be specified to construct the

rational expected future value function. As long as the period t̃ + 1 that mimics the coun-

terfactual realization of t + 1 is identified, the expectation is computed. For this step, it is

necessary to track the endogenous aggregate states {Φ(n)
t }Tt=0, as it is the key identifier to lo-

cate the period t̃+1. In the following section, I elaborate on the detailed steps to implement

the repeated transition method and how to handle the curse of the dimensionality using a

sufficient statistic approach.

2.4 Algorithm

I simulate a single path of exogenous aggregate shocks for a long-enough period T , S =

{St}Tt=0, using the aggregate transition matrix ΠS. I define a time partition T (S) that groups

periods with the same shock realization as follows.

TS := {τ |Sτ = S} ⊆ {0, 1, 2, ..., T} for S ∈ {B,G}.

The pseudo algorithm of the repeated transition method is as follows:

Step 1. Guess on the paths of the value functions, the state distributions, and the prices.

{V (n)
t ,Φ

(n)
t , p

(n)
t }Tt=0.

20

Step 2. Solve the model backward from the terminal period T in the following sub-steps. The

explanation is based on an arbitrary period t. Without a loss of generality, I assume

St = G and St+1 = G:

2-a. Find t̃ + 1 where the endogenous aggregate allocation in period is identical to

the one in period t + 1, but the shock realization is different from period t + 1

19Most of the sample codes provided in the Online Appendix use finer grids than two points.
20In practice, I use the stationary equilibrium allocations for all periods as the initial guess.
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(St̃+1 = B):21

t̃+ 1 = arg inf
τ∈TB

||Φ(n)
τ − Φ

(n)
t+1||∞.

2-b. Compute the expected future value function as follows:

EtṼt+1 = πG,GV
(n)
t+1 + πG,BV

(n)

t̃+1
.

2-c. Using EtṼt+1 and p
(n)
t , solve the individual agent’s problem at the period t. Then,

I obtain the solution {V ∗
t , a

∗
t+1}.

After the taking these sub-steps for ∀t, {V ∗
t , a

∗
t+1}Tt=0 are available.

Step 3. Using {a∗t+1}Tt=0, simulate forward the time series of the distribution of the individual

states {Φ∗
t}Tt=0 starting from Φ∗

0 = Φ
(n)
0 .22

Step 4. Using {Φ∗
t}Tt=0, all the aggregate allocations over the whole path such as {K∗

t }Tt=0 can be

obtained. Using the market-clearing condition, compute the time series of the market-

clearing price. If the model features a non-trivial market clearing condition, compute

the time series of the implied prices {p∗t}Tt=0.
23

Step 5. Check the distance between the implied prices and the guessed prices.

sup
BurnIn≤t≤T−BurnIn

||p∗t − p
(n)
t ||∞ < tol

21Such t̃+ 1 might not be unique. However, any of such t̃+ 1 is equally good to be used in the next step.
22In this step, I use the non-stochastic simulation method (Young, 2010).
23It is worth noting that the prices here are not the market-clearing prices that are determined from

the interactions between demand and supply. Rather, they are the prices implied by the market-clearing
condition given either demand or supply fixed at the nth iteration:

p∗t = argp̃{QD(p
(n)
t , Xt, Xt+1)−QS(p̃, Xt, Xt+1) = 0} or

p∗t = argp̃{QD(p̃, Xt, Xt+1)−QS(p
(n)
t , Xt, Xt+1) = 0}.

In Section 6, I use this method to solve the model in Khan and Thomas (2008). In the computation method
used in Khan and Thomas (2008), a market-clearing price needs to be computed in an additional loop due
to the non-trivial market-clearing condition. The implied price cannot replace the market-clearing price in
this method, as the misspecified price prediction rule can lead to a divergent law of motion of the aggregate
allocation. In contrast, due to the missing market clearing step, the repeated transition method significantly
saves computation time. I discuss the non-trivial market clearing condition further in Section 4.
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Note that the distance is measured after excluding the burn-in periods at the beginning

and the end of the simulated path. This is an adjustment to handle a potential bias

from the imperfect guesses on the terminal period’s value function V
(n)
T and the initial

period’s distribution Φ
(n)
0 . The convergence criterion can be augmented by including

the distance in other allocations, such as value functions or distributions.

If the distance is smaller than the tolerance level, the algorithm is converged. Other-

wise, I make the following updates on the guess:24

p
(n+1)
t = p

(n)
t ψ1 + p∗t (1− ψ1)

V
(n+1)
t = V

(n)
t ψ2 + V ∗

t (1− ψ2)

Φ
(n+1)
t = Φ

(n)
t ψ3 + Φ∗

t (1− ψ3)

for ∀t ∈ {0, 1, 2, 3, ..., T}. With the updated guess {V (n+1)
t ,Φ

(n+1)
t , p

(n+1)
t }Tt=0, I go back

to Step 1.

(ψ1, ψ2, ψ3) are the parameters of convergence speed in the algorithm. If ψi is high, then

the algorithm conservatively updates the guess, leaving the algorithm to converge slowly. If

the equilibrium dynamics are almost linear, as in Krusell and Smith (1998), uniformly setting

ψi at around 0.9 guarantees convergence at a fairly high convergence speed. However, if a

model is highly nonlinear, the convergence speed needs to be controlled to be substantially

slower than the one in the linear models. This is because the nonlinearity can lead to a

sudden jump in the realized allocations during the iteration if a new guess is too dramatically

changed from the last guess. A heterogeneous updating rule ψi ̸= ψj (i ̸= j) is also helpful

in cases where the dynamics of certain allocations are particularly more nonlinear than the

others.

As can be seen from the convergence criterion in Step 5, the algorithm stops when the

24In highly nonlinear aggregate dynamics, I have found that the log-convex combination updating rule
marginally dominates the standard convex combination updating rule in terms of convergence speed. The
log-convex combination rule is as follows:

log(p
(n+1)
t ) = log(p

(n)
t )ψ1 + log(p∗t )(1− ψ1).
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predicted allocation paths (nth iteration) are close enough to the realized allocation paths

(with asterisks). Therefore, once the convergence is achieved, the solution is guaranteed to

be dynamically consistent: the predicted path coincides with the realized path. If the accu-

racy is measured in R2 or in the mean-squared errors, as in Krusell and Smith (1998), the

repeated transition method features R2 at 1, and its mean-squared error becomes negligibly

different than zero.

2.5 The required length of simulation path

In this section, I discuss how long a simulation needs to be for the repeated transition

method. First, one of the most crucial determinants of the desired length is the assumed

Markov process of the exogenous aggregate states. That is, the number of realizations of

each exogenous state during the simulation is the key information. As in Krusell and Smith

(1998), if only two aggregate states are realized based on a symmetric transition probability

of a moderate level (0.875), the simulation of 500 periods is good enough to make the solution

stay unaffected by further lengthening. For the example of the RBC model with irreversible

investment, which will be discussed in Sections 5 and 6, if an aggregate TFP process is

discretized by the Tauchen method, covering the three standard deviation ranges, then at

least 3,000 periods are needed to have enough realizations (at least 30) for both ends of

the grids. Still, depending on the persistence of the exogenous state process, the required

number of periods might vary.

The repeated transition method is not the only one of which the precision is affected by

the length of the simulation. For example, in the state space-based approach, the regression

or law of motion also needs to have enough number of observations in each exogenous state

realization to guarantee the accuracy.

Second, the nonlinearity of the model is another critical factor. As will be introduced

in Section 3, in practice, the group of the periods with similar endogenous aggregate states

is identified instead of the period with exactly identical states. Then, piecewise interpola-

tion makes up for the missing observations. If a DSGE model is highly nonlinear, having

additional observation in each exogenous state realization might substantially improve the
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accuracy of the solution, adding more nodes for the interpolation. For the example of the

RBC model with irreversible investment, which is highly nonlinear, an increase in the length

of the simulation gradually changes the solutions until adding the 4,000 periods, after which

the solution stays almost unaffected.

In summary, the required simulation length is not substantially longer than the number

of periods often used in the state space-based approach. However, it varies depending on

the shock’s persistence and the nonlinearity of the model. The accuracy of the repeated

transition method comes from updating the entire predicted path of allocations based on

the entire realized ones, which passes over the maximal information (period-by-period) for

the dynamics to the next iteration. It is contrasted with the state space-based approach,

where the update is based on a functional relationship between the current and future period

that only summarily captures the information on the dynamics. This is why the repeated

transition method does not have to use a particularly longer simulation period than the

alternative, while the accuracy is high.

3 A sufficient statistic approach

In the algorithm explained in the previous section, Step 2-a is the most demanding step for

heterogeneous-agent models, as it needs to find a period t̃+1 that is identical to period t+1

in terms of distribution. Therefore, the similarity of the distributions across the periods

needs to be measured, which is a computationally costly process.

However, if there is a sufficient statistic that can perfectly represent a period’s endogenous

aggregate state, the computational efficiency can be substantially improved. This enables

to locate the target period t̃ + 1 by only comparing the distance between these sufficient

statistics instead of the distributions. For example, in Krusell and Smith (1998), if the

aggregate capital is the sufficient statistic, Step 2-a becomes easier as follows:

t̃+ 1 = arg inf
τ∈TB

||K(n)
τ −K

(n)
t+1||∞.

As the algorithm relies on the ergodicity, a sufficiently long period of simulation is needed
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for accurate computation. However, in practice, the simulation still ends in finite periods.

Therefore, the period t̃ + 1 that shares exactly identical sufficient statistic as period t+1

might not exist. For this hurdle, the following adjusted versions of Step 2-a and Step 2-b

help improve the accuracy of the solution:

2-a′. Find t̃up + 1 where the sufficient statistic of the endogenous aggregate state is closest

to the one in period t+1 from above, but the shock realization is different from period

t+ 1:

t̃up + 1 = arg inf
τ∈TB s.t. e

(n)
τ ≥e

(n)
t+1

||e(n)τ − e
(n)
t+1||∞,

where eτ denotes the sufficient statistic of the endogenous aggregate state in period τ .

Similarly, find t̃dn + 1 where the sufficient statistic of the endogenous aggregate state

is closest to the one in period t + 1 from below, but the shock realization is different

from period t+ 1:

t̃dn + 1 = arg inf
τ∈TB s.t. e

(n)
τ <e

(n)
t+1

||e(n)τ − e
(n)
t+1||∞.

Then, I have e
(n)

t̃up+1
and e

(n)

t̃dn+1
that are closest to e

(n)
t+1 from above and below, respec-

tively. Using these two, I compute the weight ω to be used in the convex combination

of value functions in the next step:

ω =
e
(n)
t+1 − e

(n)

t̃dn+1

e
(n)

t̃up+1
− e

(n)

t̃dn+1

.

2-b′. Compute the expected future value function as follows:

EtṼt+1 = πG,GV
(n)
t+1 + πG,B

(
ωV

(n)

t̃up+1
+ (1− ω)V

(n)

t̃dn+1

)
.

Step 2-a’ and Step 2-b’ construct a synthetic counterfactual conditional value function

by the convex combination of the two value functions that are for the most similar periods to
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period t+1. These adjusted steps help accurately solve the problem in relatively short periods

of simulation. For example, the model in Krusell and Smith (1998) can be accurately solved

using only T = 500 periods of simulation (except for 100 burn-in periods at the beginning

and the end of the simulated path).

The step of interpolation after finding the closest periods in terms of sufficient statis-

tics can be understood as a piecewise interpolation, in contrast to the unconditional linear

interpolation used in the state space-based approach based on the regression coefficients.

3.1 The qualification for the sufficient statistic

In this section, I analyze under which condition a variable can serve as a sufficient statis-

tic that replaces the entire distribution for implementing the repeated transition method. A

large body of the literature has considered sufficient statistics to overcome the curse of di-

mensionality for the computation of DSGE, but there has been little theoretical explanation

of when such an approximation can be used. Proposition 1 provides the qualification for a

variable to be used as a sufficient statistic in the repeated transition method.

Proposition 1 (The qualification for the sufficient statistic).

Suppose a time series of the value functions is given from a recursive competitive equilibrium

that is unique. For a sufficiently large T , if there exists a time series of a variable {et}Tt=0

such that for each time partition TS = {t|St = S}, ∀S ∈ {B,G} and for ∀(a, z),

(i) eτ0 < eτ1 ⇐⇒ Vτ0(a, z) < Vτ1(a, z) for any τ0, τ1 ∈ TS

or

(ii) eτ0 < eτ1 ⇐⇒ Vτ0(a, z) > Vτ1(a, z) for any τ0, τ1 ∈ TS,

then et is the sufficient statistic of the endogenous aggregate state Φt for ∀t.

Proof.

See Online Appendix. ■

Proposition 1 states that if a time series {et}Tt=0 monotonically ranks the level of the
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corresponding period’s value function for each individual state, et is the sufficient statistic of

time period t in the repeated transition method. The intuition behind the proposition is as

follows. Suppose a situation where a researcher is searching for a value function to compute

the conditional expectation. If the time index of the correct counterfactual period to use is

explicitly given as τ , then the researcher can easily identify which value function to use, as

all value functions are indexed by time. So, in this case, Vτ is trivially the one to use.

Now instead of τ , suppose the level of eτ is known to the researcher. Then, similar to

the prior situation where τ is known, the researcher can identify which value function to use

because the ranking information uniquely pins down the corresponding value function due to

the strict monotonicity. For example, if two periods τ0 and τ1 share the same level of et, thus

eτ0 = eτ1 , then the strict monotonicity says Vτ0 = Vτ1 . If this is not the case (Vτ0 ̸= Vτ1), then

either the equilibrium’s uniqueness or strict monotonicity is violated, which is the proof’s

key idea. The same argument is seamlessly applied when the value function is replaced by a

policy function in case the model is solved by the first-order optimality condition.

To summarize the theoretical result in this section, once the ranking information across

the different periods’ value functions is known, one can exactly pin down which period’s

value function to use. The qualification provides a theoretical ground to understand how a

sufficient statistic approach works in the repeated transition method. In Section 6, I show

how the monotonicity is quantitatively validated for the converged solution. One important

note is that a sufficient statistic in the repeated transition method is not always qualified

as a sufficient statistic for the law of motion in the state space-based approach. This is

because the former may not include sufficient information about the nonlinear inter-temporal

dynamics of the endogenous aggregate state variables. For example, in the nonlinear model

explained in Section 6, if I fit the nonlinear aggregate dynamics of the sufficient statistic

obtained from the repeated transition method to the nonlinear specifications of the single

sufficient statistic, R2 is still significantly lower than unity. However, the single-dimensional

aggregate allocation (the aggregate capital stock) perfectly serves as a sufficient statistic in

the repeated transition method, satisfying the monotonicity condition.
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4 Non-trivial market clearing conditions

In this section, I explain how the repeated transition method efficiently handle the non-trivial

market clearing conditions and why such approach is not feasible in the state space-based

model.

Consider the following market clearing condition:

QD(pt, Xt, Xt+1)−QS(pt, Xt, Xt+1) = 0.

pt := argp̃{QD(p̃, Xt, Xt+1)−QS(p̃, Xt, Xt+1) = 0}.

where QD and QS are demand and supply functions; pt is the market clearing price; Xt and

Xt+1 are the current and future aggregate states. The non-trivial market clearing condition

indicates the case where there is no closed-form characterization of either demand side or the

supply side (or both). For this problem, the repeated transition method utilizes the implied

price p∗t instead of the exact clearing price pt, where

p∗t := argp̃{QD(p
(n)
t , Xt, Xt+1)−QS(p̃, Xt, Xt+1) = 0} or

:= argp̃{QD(p̃, Xt, Xt+1)−QS(p
(n)
t , Xt, Xt+1) = 0}

That is, either the demand side or the supply side is fixed by assuming the guessed price level

from the nth iteration, and the price implied by the remaining side satisfying the equation is

utilized. The computation of such implied price is substantially easier than the computation

of the market clearing price, as the latter is a fixed point problem: both supply and demand

are simultaneously affected by the price.

During the iteration, the implied price does not clear the market at each period, as it’s

only the implied price. However, as iteration goes by with the gradual updates, the predicted

path of prices {p(n)t }Tt=0 converges to the equilibrium prices {pt}Tt=0. This convergence makes
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the implied price clear the market in the limit for the following reasons:25

lim
n→∞

QD(p
(n)
t , Xt, Xt+1)−QS(p∗t , Xt, Xt+1) = 0

=⇒ QD( lim
n→∞

p
(n)
t , Xt, Xt+1)−QS(p∗t , Xt, Xt+1) = 0

=⇒ QD(pt, Xt, Xt+1)−QS(p∗t , Xt, Xt+1) = 0

=⇒ p∗t = pt (∵ uniqueness of the equilibrium).

We need the local continuity of demand or supply to proceed from the first to the second

line. This should be true except for the knife-edge case where the unique equilibrium is

at the discontinuity point, which DSGE models are not often subject to, so I assume the

continuity. Thus, the converged solution in the repeated transition method computes the

exact market clearing price in the limit simultaneously with other allocations.

In contrast, the implied price cannot replace the market clearing price in the state space-

based approach (Krusell and Smith, 1997) in general. In this approach, the price dynamics

is approximated by the parametric function of the aggregate state or the sufficient statistic,

and the coefficients of the function carry the information about the relationship between

the price and the aggregate state. Given that the number of coefficients cannot technically

exceed the number of periods, the coefficients can only carry the summarized information.

If the coefficients are updated based on the implied price rather than the market clearing

price, the update is based on inaccurate levels, thus in an inaccurate relationship.26 Then,

the wrongly updated coefficients easily lead to a divergent path, as there is no theoretical

guarantee that the coefficient of the functional form features stability. On the other hand,

the repeated transition method preserves all the information about the relationship between

the aggregate state and the price, as the method carries the whole sequence (time paths)

over the iteration. Then, it achieves the uniform convergence of the paths in the sequence

space due to the stability of the equilibrium.

25For brevity, I suppose the case where the demand side QD does not have a closed-form characterization.
26Bakota (2023) introduces a method that approximately updates the pricing rules in each iteration without

perfectly clearing the market, significantly improving the computation speed in the state space. However,
the approximation step is not required for the repeated transition method.
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5 Accuracy and speed: Comparison with the existing

methods

In this section, I compare the repeated transition method with the other nonlinear solution

methods in the literature for three DSGE models. The first is the real business cycle model

with irreversible investment. The repeated transition method is compared with three dif-

ferent methods: linearized solution, OccBin solution by Guerrieri and Iacoviello (2015), and

GDSGE solution by Cao et al. (2023). The second model is the heterogeneous-household

business cycle model in Krusell and Smith (1998). I compare my method with the algorithm

introduced in Maliar et al. (2010). Lastly, I compare the heterogeneous-firm business cycle

model in Khan and Thomas (2008). The repeated transition method is compared directly to

the paper’s solution which utilizes the method of Krusell and Smith (1997). The computing

machine used for the analysis is MacBook Pro 2021 with M1 Pro chip.

The first comparison is using the real business cycle model with the irreversible invest-

ment. A detailed description of the model is available in the appendix and also in Guerrieri

and Iacoviello (2015). The model features highly nonlinear aggregate dynamics due to the

occasionally binding irreversibility constraint for capital investment. Therefore, besides the

macroeconomic implications, the model serves as a testing ground for the accuracy of the dif-

ferent methods for the nonlinear solutions. For an accurate comparison, I feed the same path

of the simulated aggregate exogenous state (TFP) for each solution to each algorithm. The

persistent TFP process is discretized by the Tauchen method using 7 grid points covering 3

standard deviation ranges with a uniform distance between the grid points. The simulation is

5,000 periods long with 500 extra burn-in periods. Depending on the convergence criterion,

each solution displays the trade-off between the accuracy and the computation efficiency

(time). In this comparison, I tune the repeated transition method to stop after around 90

seconds, matching the speed of the GDSGE toolkit.

First four of the Table 1 compares the accuracy of the different solution methods; the

column with RTM label is for the repeated transition method; GDSGE, OccBin, and the

linearized method follow in order. Two criteria of the accuracy measure are considered: the

dynamic consistency error Errort and the Euler equation error EEt following Judd (1992).
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Especially, the former criterion is defined as follows:27

Errort = K
(n)
t −K∗

t

where {K(n)
t }Tt=1 is the dynamics of the capital stock from each solution method, and K∗

t is

the implied capital path assuming the agent is expecting the path of {K(n)
t }Tt=1. The repeated

transition method constructs the period-specific expected future allocations by properly com-

bining allocations in the predicted path. Then, it provides the realized allocations implied

by the prediction path. The dynamic consistency is achieved only when these two paths

coincide. Thus, the method provides a useful tool to test the dynamic consistency in other

solution methods by feeding the simulated path based on other solution methods as the

predicted path to the algorithm.

Table 1: Comparison across the solution methods

RTM GDSGE OccBin Linear

Accuracy

max(|Errort|) (% of steady-state K) 0.003 0.735 1.317 2.019√
mean(Error2t ) (% of steady-state K) 0.001 0.025 0.217 0.559

max(|EEt|) (% of contemp. Ct) 0.014 0.057 2.854 2.323√
mean(EE2

t ) (% of contemp. Ct) 0.002 0.059 0.775 0.707

Business cycle stat.

mean(I) 0.363 0.363 0.365 0.363

mean(C) 1.166 1.166 1.164 1.160

vol(I) 0.022 0.022 0.023 0.023

vol(C) 0.052 0.052 0.052 0.052

skewness(I) 1.363 1.320 1.307 1.407

skewness(C) -0.225 -0.213 -0.322 -0.095

kurtosis(I) 4.447 4.578 4.513 4.255

kurtosis(C) 2.776 2.546 2.858 2.796

27The form of the EEt is identical to the one in Guerrieri and Iacoviello (2015).
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The repeated transition method displays a higher accuracy than other methodology in

terms of the four statistics: the absolute maxima of the dynamic inconsistency (first row)

and the Euler equation error (third row); the square roots of the mean-squared dynamic

inconsistency (second row) and the Euler equation error (fourth row).
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Figure 1: The equilibrium path of different solutions

It is worth noting that the repeated transition method’s accuracy and speed do not rely on

computational boost from the lower-level computation language such as C++ or advanced

econometric techniques. In theory, the dynamic consistency error can be lowered to an

arbitrarily small level depending on the tolerance, using the repeated transition method.

Therefore, there is room for the algorithm to be further improved in terms of speed and

accuracy once it is combined with the lower-level language or the recently developed machine-

learning/deep-learning techniques.

The bottom part of Table 1 reports the business cycle statistics implied in each solu-

tion. There are little differences in the lower-order moments but significant differences in

the higher-order moments, such as skewness and kurtosis. Figure 1 plots a part of the equi-

librium path of the capital stock obtained by each solution. The difference between the

solutions of the repeated transition method and the GDSGE toolkit is the smallest; the Oc-

cBin solution displays a significant deviation from the repeated transition method when the
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aggregate capital stock is large. Over the 5,000 simulation periods, the correlation between

the aggregate output (from the repeated transition method) and the absolute difference be-

tween the solutions of repeated transition method and OccBin toolkit is 0.631, implying a

pro-cyclicality of the computation error. On the other hand, the absolute difference between

the linear solution and the repeated transition method is counter-cyclical, with an output

correlation of -0.640. This is because the solution by the OccBin toolkit provides a rela-

tively more accurate solution during the downturn when the constraint is binding, while

the nonlinearity stemming from the precautionary motivation during the normal periods is

relatively inaccurately captured. In contrast, the linear solution cannot properly handle the

occasionally binding constraint during the downturn, which leads to a large computation

error during these periods.
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(a) Over the equilibrium capital stock (RTM)
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(b) Over the equilibrium time path

Figure 2: Euler equation errors

Panel (a) of Figure 2 plots the absolute log Euler equation errors of the repeated transition

method along with the equilibrium capital stock in the horizontal axis. Panel (b) plots the

time series of the absolute log Euler equation errors in comparison with the other methods.

Consistent with the statistics in Table 1, the Euler equation error is significantly lower in

the repeated transition method than in the others.

Next, I compare the equilibrium allocations obtained from the repeated transition method

and the ones from the method in Maliar et al. (2010) for the model of Krusell and Smith
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(1998).28 The repeated transition method computes the exact level of the Lagrange mul-

tiplier for the occasionally binding constraint at the individual level, which enables the

accurate computation. The path of the lagrange multipliers is computed by the residuals

using the Euler equation as in Rendahl (2014).29 Both of the algorithms are tuned to satisfy

the convergence criteria after running for approximately two minutes. The result is that

the accuracy of two algorithms in the metric of the square root dynamic consistency is neg-

ligibly different (less than 10−5) despite Maliar et al. (2010) abstracting from computing

the Lagrange multiplier for the occasionally binding constraint. This is due to the model

characteristic that the total amount of wealth held by constrained households is negligibly

small. The similar performance between the two algorithms is due to the linearity of the

capital dynamics, which makes the state space-based approach and the sequence space-based

approach only negligibly different.

Figure 3 plots a part of the predicted path {K(n)
t }Tt=0 and the realized (implied) path

{K∗
t }Tt=0 of aggregate capital Kt obtained from the repeated transition method and the

simulated path from the fitted log-linear law of motion (Krusell and Smith, 1998).30 As can

be seen from all three lines hardly distinguished from each other, the repeated transition

method computes almost identical equilibrium allocations as the log-linear law of motion

by Krusell and Smith (1998). This is because the log-linear specification almost perfectly

captures the actual law of motion in the model.

However, when a model features a non-trivial market-clearing condition, as in the model

of Khan and Thomas (2008), the repeated transition method substantially outperforms the

state space-based approach based on the law of motion Krusell and Smith (1997).31 This

is because the non-trivial market-clearing condition requires the state space-based approach

to include an extra loop to find an exact market-clearing condition in each period, while

28The parameters are set as in the benchmark model in Krusell and Smith (1998) without idiosyncratic
shocks in the patience parameter β.

29For some models where an occasionally binding constraint includes the current individual/aggregate
state (e.g., irreversible investment), it is necessary to compute the expected future Lagrange multipliers.
The repeated transition method can also accurately compute this expectation. See the sample codes in the
Online Appendix.

30This figure is motivated from the fundamental accuracy plot suggested in Den Haan (2010).
31Krusell and Smith (1997) algorithm is a variant of the algorithm in Krusell and Smith (1998), which

is applicable to models with non-trivial market-clearing conditions. Khan and Thomas (2008) uses this
algorithm.
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Figure 3: Equilibrium dynamics of the aggregate capital stock (Krusell and Smith, 1998)

Notes: The figure plots the time series of the aggregate wealth (capital) Kt in the model of Krusell and

Smith (1998). The line with a round tick mark is the predicted wealth time series (nth guess) {K(n)
t }1000t=500.

The line with the square tick mark is the realized wealth time series {K∗
t }1000t=500. The dashed line is the

predicted wealth time series implied by the law of motion in Krusell and Smith (1998).

the issue does not exist in the repeated transition method. Instead, the repeated transition

method utilizes implied price by the market clearing condition, which coincides with the

market clearing price only in the limit with respect to the number of iteration.

I solve the model in Khan and Thomas (2008) using both the repeated transition method

and the Krusell and Smith (1997) algorithm with an external loop for the non-trivial market-

clearing condition. Due to the substantial difference in the computational efficiency, it is

tricky to compare the accuracy given the same implementation time. Therefore, instead of

fixing the time, I impose the same termination condition for both methods in terms of the

dynamic consistency.32 Figure 4 plots the dynamics of price pt (panel (a)) and aggregate

capital stock Kt (panel (b)) computed from the repeated transition method and Krusell and

32Both of the algorithms are designed to stop when the following criterion is satisfied:

max{sup
t
{||p∗t − p

(n)
t ||}, sup

t
{||K∗

t −K
(n)
t ||}} < 10−7.

The terminal condition is slightly different from the one in Step 5 of Section 2.4. Likewise, the terminal

condition can be flexibly adjusted based on different combinations of V
(n)
t ,Φ

(n)
t , and p

(n)
t .
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Smith (1997) algorithm. For the allocations computed from the repeated transition method,

both the predicted time series and the realized time series are plotted. As shown in the figure,

all three lines display almost identical dynamics of the price and the aggregate allocations.

The mean squared difference in the solutions between the repeated transition method and

Khan and Thomas (2008) is less than 10−5.
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(b) Aggregate capital stocks Kt

Figure 4: Computed dynamics of aggregate allocations (Khan and Thomas, 2008)

Notes: The figure plots the time series of the price pt the aggregate wealth (capital) Kt in the model of Khan
and Thomas (2008). In both panels, the line with a round tick mark is the predicted time series (nth guess)

{p(n)t ,K
(n)
t }1000t=500; the line with the square tick mark is the realized time series {p∗t ,K∗

t }1000t=500; the dashed
line is the predicted time series implied by the law of motion.

In terms of the computational efficiency, the two methods display a substantial discrep-

ancy. the repeated transition method takes around 9 minutes to converge, while Krusell and

Smith (1997) algorithm converge in around 5 to 6 hours on average in MATLAB.33

For both models of Krusell and Smith (1998) and Khan and Thomas (2008), I use the

repeated transition method using the sufficient statistic approach where the aggregate capital

stock (the first moment) is used as the sufficient statistic. For this approach, it is necessary

to check whether the firm’s individual value (policy) function is strictly monotone in the

aggregate capital stock. In Appendix B, I show the strict monotonicity holds. Therefore,

the aggregate capital stock functions as a sufficient statistic. Moreover, the inter-temporal

dynamics of this statistic are approximately log-linear, which also guarantees the accuracy

33The convergence speed might change depending on the updating weight.
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of the state space-based approach using the log-linear law of motion.

6 Applications

6.1 Overview of the applications

In this section, I overview the list of the applications I provide in the Online Appendix. The

repeated transition method is applicable to a broad class of DSGE models. The application

is not limited by the inclusion of 1) heterogeneous agents, 2) occasionally binding constraints,

3) multiple aggregate shocks, and 4) non-trivial market clearing conditions.

For example, the sample codes include the application for an extension of Krusell and

Smith (1998) model by the endogenous labor supply with aggregate uncertainty shock, where

the aggregate uncertainty shock is from Bloom et al. (2018).34 Solving this extended model

is demanding as it features all the hurdles mentioned above. Nevertheless, the repeated tran-

sition method accurately solves the model efficiently using the sufficient statistic approach,

and I verify the monotonicity condition required for the sufficient statistic. However, the

equilibrium aggregate dynamics of the model are still log-linear, as in Krusell and Smith

(1998), due to only a negligible mass of households occasionally constrained by the borrow-

ing limit. Therefore, from the perspective of computation, it is not significantly different

from the result of Krusell and Smith (1998) and Khan and Thomas (2008), where the micro-

level non-linearity washes out after aggregation: the model can be accurately solved by

linear state space approach.35 Instead, I present a heterogeneous-firm real business cycle

model where individual firms are subject to the occasionally binding capital irreversibility

constraint in the following section, which leads to highly nonlinear aggregate dynamics. The

model extends the canonical real business cycle model with irreversible investment used in

Section 5 by including 1) heterogeneous firms that invest and are subject to the irreversibility

constraint and 2) endogenous labor supply and demand.

34The extension by the endogenous labor supply is introduced in the appendix of Krusell and Smith
(1998). The paper’s appendix explains that the aggregate law of motion is still highly log-linear in aggregate
capital, while the wage-capital relationship is nonlinear. This nonlinear relationship is accurately solved in
the provided sample code using the repeated transition method.

35The extended version of Krusell and Smith (1998) is available in the online appendix.
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6.2 The leading application

In this section, I show that the repeated transition method is powerful in solving nonlinear

DSGE models with heterogeneous agents. Specifically, I analyze a heterogeneous-firm real

business cycle model where individual firms are subject to the occasionally binding capital

irreversibility constraint.

The representative household maximizes the following lifetime utility in the recursive

form:

V (a;X) = max
c,a′,N

log(c)− ηN + βEV (a′;X ′)

s.t. c+

∫
a′(X ′)q(X ′)dΓX′ = a+ w(X)N

X ′ = GH(X)

where c is consumption; a is the asset (equity) value before dividend payment; N is labor

supply; q is the Arrow-Debreu state price; w is wage; η is labor disutility parameter.36 The

aggregate state X is a bundle of the distribution of individual firms Φ and aggregate TFP

A: X = {Φ, A}. The representative agent rationally expects the law of motion GH of the

aggregate states. I use the apostrophe to indicate future allocations.

Heterogeneous firms solve the following maximization problem of the present value of the

sum of the dividend stream in the recursive form:

J(k, z;X) = max
k′

d+ Ez,XM(X,X ′)J(k′, z′;X ′)

s.t. d = π(k, z;X) + (1− δ)k − k′

k′ ≥ ϕIss + (1− δ)k

π(k, z;X) = max
k,n

Akαnγ − w(X)n

X ′ = GF (X)

36Following Khan and Thomas (2008), we assume the Frisch elasticity of the labor supply is infinity.
However, the repeated transition method also solves the case of the finite Frisch elasticity seamlessly. In the
online appendix such examples are provided.
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where d is dividend; k is individual capital stock; z is the idiosyncratic productivity; n is

the labor demand; π is a temporal profit; δ is the depreciation rate; Iss is the steady-state

aggregate investment level; ϕ is the irreversibility parameter. GF is the law of motion of

the aggregate state from a firm’s perspective, which coincides with GH under the rational

expectation and satisfies the dynamic consistency in the recursive competitive equilibrium.

The stochastic discount factor M is determined in the competitive market as follows:

M(X,X ′) = β
c(X)

c(X ′)

The individual and aggregate log productivities follow AR(1) processes, which are discretized

by the standard Tauchen method.

The recursive competitive equilibrium is defined based on the following market-clearing

conditions:

(Labor market) N(X) =

∫
n(k, z;X)dΦ

(Equity market) a(X) =

∫
J(k, z;X)dΦ.

In the market clearing condition, the supply of equity meets the demand in the form of

household wealth.

For computation, I use the standard parameter levels in the literature, which are available

in Appendix C. For easier computation, I normalize the firm’s value function by contem-

poraneous consumption c(S) following Khan and Thomas (2008). Then, I define a price

p(S) := 1/c(S) and the normalized value function J̃(k, z;S) := p(S)J(k, z;S). From the

intra-temporal and inter-temporal optimality conditions of households, w(S) = η/p(S) and

M(S, S ′) = βp(S ′)/p(S). Thus, p(S) is the only price to characterize the equilibrium. Then,

the equilibrium price p(S) is determined from the following variant of the non-trivial market
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clearing condition:37

p = argp̃

{
1/p̃−

∫
[d(x;X, p̃) + w(X, p̃)n(x;X, p̃)] dΦ = 0

}
.

where the consumption is c = 1/p̃. In the problem above, the individual dividend policy

d, wage w, and labor demand n functions are augmented by an argument p̃, indicating

that these objects are calculated assuming the price is at the level of p̃. This is a fixed-point

problem and computationally costly to solve, as consumption c = 1/p̃ affects the firms’ inter-

temporal decision, which in turn affects the dividend, consumption, and thus, p̃. Instead of

the market clearing price, the repeated transition method uses the implied price p∗, which

is obtained as follows:

p∗ = argp̃

{
1/p̃−

∫ [
d(x;X, p(n)) + w(X, p(n))l(x;X, p(n))

]
dΦ = 0

}
= 1/

∫ [
d(x;X, p(n)) + w(X, p(n))l(x;X, p(n))

]
dΦ,

where p(n) is the guessed price in the nth iteration. By bypassing the costly fixed-point

problem, the method dramatically improves the speed of the computation.

The first-order condition of a firm’s problem is as follows:38

1 = Ez,XM(X,X ′)J1(k
′, z′;X ′) + λ(k, z;X) (1)

where λ is the Lagrange multiplier of the occasionally binding constraint. The envelope

condition of a firm’s problem is as follows:

J1(k, z;X) = π1(k, z;X) + (1− δ)− λ(k, z;X)(1− δ)

= π1(k, z;X) + (1− δ)(1− λ(k, z;X)) (2)

37This condition is derived from combining the household’s budget constraint and the equity market
clearing condition.

38The subscript denotes the partial derivative with respect to the argument in the corresponding argument
order.
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Combining equations (1) and (2), we have the following inter-temporal optimality condition:

1− λ(k, z;X) = Ez,XM(X,X ′)(π1(k
′, z′;X ′) + (1− δ)(1− λ(k′, z′;X ′)))︸ ︷︷ ︸
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Figure 5: Strict monotonicity of the marginal benefit in the aggregate capital stock

The expected marginal benefit requires the computation of state-contingent allocations

(X ′ − dependent) of marginal profit π1 and Lagrange multiplier λ. For this problem, I take

the sufficient statistic approach described in Section 3.1, and the aggregate capital stock

K(S) (the first moment of the distribution of the firm-level capital stocks) is the sufficient

statistic. I validate this approach by showing the monotonicity condition of Proposition 1 is

satisfied. In particular, I show that each individual’s marginal benefit π1 + (1− δ)(1− λ) is

strictly monotone in K for all aggregate exogenous state realization (TFP level). Figure 5

plots the marginal benefit in the vertical axis and the corresponding aggregate equilibrium

capital stock in the horizontal axis for different TFP levels (A1, A2, A3, . . . , A7) given the

individual state fixed at the median levels of capital stock and the firm-level productivity.

In the unreported tests, which are available in the sample code, I confirm that monotonicity

holds regardless of the choice of an individual firm.
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For the computation, I run a simulation of 1,000 periods of aggregate TFP shock, where

the TFP is discretized by the Tauchen method, covering the two standard deviation ranges.

The computed aggregate capital path is highly nonlinear due to the occasionally binding

constraint. Figure 6 plots a part of the predicted path {K(n)
t }Tt=0 and the realized (implied)

path {K∗
t }Tt=0 of aggregate capital Kt obtained from the repeated transition method and the

simulated path from the fitted log-linear law of motion. While the predicted path and the

realized path coincide at the equilibrium path, the log-linear prediction significantly deviates

from the others.
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Figure 6: The equilibrium path of aggregate capital stock

6.3 Nonlinearity and aggregation

In this section, I compare the nonlinearity implied in the heterogeneous firm model with

the one in the representative firm model, which is obtained by simply muting the heteroge-

neous firm-level productivity.39 For a valid comparison, I feed the same exogenous aggre-

gate TFP path for both models and compute the equilibrium using the repeated transition

39All the parameters are assumed at the same level except for the firm-level productivity.
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method. Figure 7 plots a part of the equilibrium capital path of the heterogeneous firm

model (solid line) and the representative firm model (dash-dotted line) in log deviation from

each model’s steady state.
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Figure 7: Equilibrium dynamics comparison: Heterogeneous vs. representative

The volatility of the aggregate capital stock is significantly greater in the heterogeneous

firm model, which is the by-product of the greater volatility in the aggregate investment.

Table 2 reports the business cycle statistics of the two models. The output and investment

are around 10 percent more volatile in the heterogeneous firm model than the other, while

consumption volatilities are at a similar level. The skewness of output is greater, and the

skewness of consumption and investment is lower in the heterogeneous firm model.

The representative firm model fails to represent the heterogeneous-firm model over the

business cycle. The reason is the nonlinearity at the firm-level capital dynamics.40 To see

this, I compute the same heterogeneous and representative firm models without the occasion-

ally binding constraint (fully reversible investment), which is the source of the nonlinearity.

I refer to this version as the frictionless benchmark. Figure 8 plots the aggregate capital

dynamics of the frictionless benchmark of both models in log deviation from the steady state

40This result is specific to this model. For example, Khan and Thomas (2008) shows that the general
equilibrium effect washes out the firm-level nonlinearity in their model, as can be also seen from Figure 4.
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Table 2: Business cycle statistics: Heterogeneous vs. representative

Heterogeneous Representative

Volatility

log(Output) 0.042 0.039

log(Consumption) 0.034 0.034

log(Investment) 0.083 0.077

Skewness

log(Output) 0.672 0.638

log(Consumption) -0.049 -0.02

log(Investment) 1.757 1.926

and the predicted path by the log-linear law of motion. These three lines perfectly coincide

indicating that firm-level linearity makes the perfect representation that is also linear.41
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Figure 8: Equilibrium dynamics comparison - frictionless: Heterogeneous vs. representative

41The relevance of the firm-level nonlinearity in this model is contrasted with the neutrality result of
Veracierto (2002). However, the two results are based on different firm-level setups, so the direct compar-
ison is limited: the leading application is based on the occasionally-binding irreversibility constraint, while
Veracierto (2002) features an (S, s) cycle in the firm-level capital stock.

38



7 Concluding remarks

The repeated transition method globally, accurately, and efficiently solves DSGE models

in the sequence space, and the method is simple and applicable to a broad class of DSGE

models. The solution is dynamically consistent by construction. The method also provides

a new angle to a sufficient statistic approach in the computation of models with complex

aggregate states. Based on this method, I provide a theoretical condition under which

the sufficient statistic approach works for the global solution, and the condition is easily

testable. The method’s key idea is to accurately compute the expected future value (policy)

functions in the sequence space by combining realized equilibrium outcomes. As the method

does not rely on a particular form of the law of motion, it is a particularly useful tool for

analyzing nonlinear DSGE models with complex aggregate states and history-dependent (or

state-dependent) equilibrium dynamics.
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