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Motivation

For an infinite dimensional object Φt and the aggregate exogenous state St ,

Φt+1 = G(Φt ,St )

is approximated by

logXt+1 = α(St ) + β(St )logXt

where Xt is the sufficient statistics of Φt or equilibrium objects (price).

What if G is highly nonlinear?
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Accuracy matters

Figure: The figure is from Den Hann (2010)
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Why does nonlinearity matter?

“What drives a recession?”

Let’s denote the response of the aggregate allocation as g(xt ; Γt ,∆At ), where
▶ Γt = {At ,Φt} is the aggregate states.
▶ ∆At is the magnitude of the impulse.

Suppose we observe a drop of the allocation ∆xObs
t , and we want to explain this.

∆xObs
t = g(xt ; Γt ,∆At )

Traditionally,

∆xObs
t = g(xt ; Γss,∆At )

In this paper,

∆xObs
t = g(xt ; Γt ,∆A)

Depending on the aggregate state, the post shock responses of the allocation vary for the same
exogenous shock: The focus is on the role of Γt - State dependence (Hysteresis).
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This paper

Research question

How can we accurately solve the nonlinear business cycle models (with heterogeneous agents)?

What this paper does

Develops a novel algorithm called “the repeated transition method.”

Tests and compares the repeated transition method with the existing methods.

Studies the business cycle implication of corporate cash holdings through a lens of a heterogeneous-firm
business cycle model.
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Overview of the repeated transition method

▶ Solves nonlinear (HA) business cycle models accurately.

▶ Does not specify the law of motion.

▶ Global method.

▶ No perfect foresight.

▶ Sequence space based.

▶ Speed gain from the absence of an external loop
– Krusell and Smith (1997); Khan and Thomas (2008)

▶ Builds upon Boppart et al. (2018).
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Related papers

▶ Solution method for the heterogeneous agent models under the aggregate uncertainty
– Global method: den Haan (1996); Krusell and Smith (1998); Rios-Rull (1997); den Haan and Rendahl

(2010)
– Perfect foresight: Boppart et al. (2018)
– Local linearization (Fast): Reiter (2009); Auclert et al. (2021)
– Machine learning: Fernandez-Villaverde, Hurtado, and Nuno (2021); Kahou et al. (2021)

▶ Linear/nonlinear aggregate dynamics (with heterogeneous agents):
– Krusell and Smith (1998); Khan and Thomas (2008); Petrosky-Nadeau and Zhang (2021); Den Haan,

Freund, and Rendahl (2021)
– Fernandez-Villaverde, Hurtado, and Nuno (2021); Lee (2022)

▶ Heterogeneous agent models with incomplete market:
– Bewely (1977); Huggett (1993); Aiyagari (1994);

▶ Corporate saving glut:
– Riddick and Whited (2009); Jermann and Quadrini (2012); Khan and Thomas (2013)
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A generalized model framework

I introduce a generalized model framework that can nest a broad class of general equilibrium models.

V (x ;X ) = max
y ,a′

f (y ,a′, x ;X ) + Em(X ,X ′)V (a′, s′;X ′)

s.t. (y , x ′) ∈ B(x ;X ,X ′,q), Φ′ = F (X )

where

[Individual state] : x = {a, s}
[Aggregate state] : X = {Φ,S},

and in the equilibrium,

[Market clearing] : p(X ,X ′) = argp̃{Q(p̃,X ,X ′) = 0} .
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Conceptual hurdle: a counter-factual realization

▶ Suppose the aggregate state variables at period t are {Φ,S}.

▶ A rational agent should rationally expect the future period t + 1:
– The future realization with the state G
– The future realization with the state B

▶ If we simulate an aggregate shock, only a single state is realized at t + 1.
(Say St+1 = G)

▶ No one can observe the counter factual observation: the world with St+1 = B.

▶ Then, how can we specify the mysterious counter-factual world as a possible future outcome?
(Specifically, the value function)

▶ It is like Marvel’s multiverse, where the world is diverging into the different universe with different
outcomes at each second:

– In one counterfactual world, due to a Thanos’ mistake, a world still has Iron man alive. But this is not
observable to an econometrician (only to Dr. Strange).

Hanbaek Lee (U of Tokyo) Solving DSGE Models Without a Law of Motion:An Ergodicity-Based Method and an Application



State-space modelling:
1. Remove time index in the value function.
2. Assume M(K ) = K ′ . (the law of motion)
3. Solve for V = V (s;S,K ), assuming K is the sufficient statistics.
4. Obtain V B

t+1 = V (st+1;St+1 = B,K ′), using M(K ) and interpolation.
Unresolved issue: 1) the sufficient statistics K and 2) M ’s parametric form.
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Repeated transition method
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Repeated transition method

▶ It relies on the ergodic theorem:
– If a simulation path is long enough, the simulation path captures all possible aggregate state realizations.

▶ If the simulation path is long enough, there exists a period t̃ + 1 such that
1. the endogenous aggregate allocations are the same as period t + 1: Φt+1 = Φt̃+1 .

2. the counter-factual shock of period t + 1 is realized at t̃ + 1: St̃+1 = B.

▶ We can use Vt̃+1(s
′;B,Φ′) to fill up the missing counter-factual value function at period t .
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Repeated transition method:
1. For each t , find the period t̃ .
2. Obtain V G

t+1 = V (s;G,K ′) and V B
t+1 = Vt̃+1(s;B,K ′). Then, discount them to form RE.

- No law of motion is needed.
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Implementation
1. Simulate a long enough aggregate shock path S = {St}T

t=1 .

2. Given nth guess {p(n)
t ,V (n)

t ,Φ
(n)
t }T

t=0 , solve {V̂ ∗
t }T

t=0 from backward by properly forming the rational expectation using the
technique based on {V (n)

t ,Φ
(n)
t }T

t=0 . (Detail: next slide)

3. Given the value functions {V ∗
t }T

t=0 , (and the inter-temporal policy functions), compute {Φ∗
t }T

t=0 by a forward simulation.

4. Given {V ∗
t ,Φ∗

t }T
t=0 , compute the implied price levels {p∗

t }T
t=0 .

5. Evaluate the following Cauchy criterion.

sup
BurnIn≤t≤T−BurnIn

||p(n)
t − p∗

t ||∞ < tol

If the criterion is not satisfied, update the guess {p(n+1)
t ,V (n+1)

t ,Φ
(n+1)
t }T

t=0 using convex combination. (Go back to step 2)

▶ Once converged, R2 = 1, and MSE < tol : High accuracy!
▶ No market clearing step (internal loop) is needed: Speed boost!
▶ The convergence of this method hinges on the stability of recursive competitive equilibrium. If the

simulated path is not stable, the convergence may break down.
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Non-trivial step: Filling in the missing values

▶ How can we find the period t̃ + 1 that corresponds to t + 1 with a different aggregate shock?
▶ In theory,

– Consider a time partition TB = {t |St = B}. Then,

t̃ + 1 = arg inf
τ∈TB

||Φ(n)
τ − Φ

(n)
t+1||∞.

▶ In practice,
– Consider a time partition TB = {t |St = B}. Then, for a sufficient statistics K (possibly a vector),

t̃ + 1 = arg inf
τ∈TB

||K (n)
τ − K (n)

t+1||∞,

– Or find the closest one from above t̃up + 1 and the closest one from below t̃dn + 1 (w.r.t K )

V B
t+1 = wupV B

t̃up+1 + (1 − wup)V B
t̃dn+1

where wup is determined by the distances in K .
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Implementation (cont’d)
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Figure: The video clip of RTM implementation

▶ The video is from the baseline model to be introduced later.
▶ Predicted time series is nth guess, and realized time series is the optimal allocation given the guess.

Hanbaek Lee (U of Tokyo) Solving DSGE Models Without a Law of Motion:An Ergodicity-Based Method and an Application



The repeated transition method

✓□ Free from the parametric form of the law of motion.

✓□ Global method.

✓□ No perfect foresight.

✓□ Sequence space based.

✓□ Speed gain from the absence of an external loop

□ Accuracy validation.
– Krusell and Smith (1997); Khan and Thomas (2008)

□ A sufficient condition.
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Accuracy: Krusell and Smith (1998) model

150 200 250 300 350 400 450 500

34.5

35

35.5

36
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Krusell and Smith (1998)

Figure: Computed dynamics in aggregate wealth (Krusell and Smith, 1998)

▶ In the models where general equilibrium effect is strong, the dynamics of aggregate allocations is flattened to be log-linear
(Krusell and Smith, 1998).

▶ In those models, Krusell and Smith (1998) algorithm is as fast as the repeated transition method.
▶ Accuracy is also almost identical between the two methodologies.
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Non-trivial market clearing condition
Consider a labor demand decision problem of a firm with k , where α + γ < 1.

max
nd

kαnγ
d − wnd

The static optimality condition leads to

n∗
d (k) =

(
γkα

w

) 1
1−γ

Then, in the market clearing condition,

LS =
∫

n∗
d (k)dΦ =

∫ (
γkα

w

) 1
1−γ

dΦ =
( γ

w

) 1
1−γ

∫
k

α
1−γ dΦ

̸=
( γ

w

) 1
1−γ

(∫
kdΦ

) α
1−γ

=
( γ

w

) 1
1−γ K

α
1−γ

Tracking K is not enough to clear the market. Φ is needed.

LS =
∫

n∗
d (k)dΦ ̸= n∗

d

(∫
kdΦ

)
= n∗

d (K )

Hanbaek Lee (U of Tokyo) Solving DSGE Models Without a Law of Motion:An Ergodicity-Based Method and an Application



Non-trivial market clearing condition (cont’d)

In the repeated transition method, the implied price w∗ is obtained by simply equating the market
clearing condition:

LS(w (n)) =
( γ

w∗

) 1
1−γ

∫
k

α
1−γ dΦ,

where LS(w (n)) is the labor supply when the price is at the nth iteration.

w∗ = γ

(∫
k

α
1−γ dΦ

LS(w (n))

)1−γ

This implied price does not clear the market. But as ||w (n) − w∗||∞ → 0, it clears the market in the
limit.
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Accuracy: Khan and Thomas (2008) model
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(a) Price pt (= 1/Ct )
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(b) Aggregate capital stocks Kt

Figure: Computed dynamics in aggregate capital stocks (Khan and Thomas, 2008)

▶ Khan and Thomas (2008) model also features log-linear dynamics but it includes non-trivial market clearing condition in the
computation: necessity of external loop for market clearing price.

▶ The repeated transition method does not need the external loop: the prices and the allocations are computed directly at each
point on the simulation.

▶ The repeated transition method is faster by a factor of 10.
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A sufficient condition
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A sufficient condition

Proposition 1 (A sufficient condition for the sufficient statistic approach)

For a sufficiently large T , if there exists a time series of an aggregate allocation {et}T
t=0 such that for

each time partition TS = {t |St = S}, ∀S ∈ {B,G} and for ∀(a, z),

(i) eτ0 < eτ1 ⇐⇒ V (n)
τ0 (a, z) < V (n)

τ1 (a, z) for any τ0, τ1 ∈ TS

or

(ii) eτ0 < eτ1 ⇐⇒ V (n)
τ0 (a, z) > V (n)

τ1 (a, z) for any τ0, τ1 ∈ TS

then xt is the sufficient statistics of the endogenous aggregate state Φt for ∀t .

▶ Intuition:
1. The rankings of the values in a period with e0 and a period with e1 are the same if e0 = e1.
2. Among all the possible allocations (ergodic theorem), if the ranking is known, the level is determined.

▶ This is a theoretical sufficient condition but not a constructive statement.
– A sufficient condition can be checked only after the convergence of the algorithm. (Later in the baseline model)
– However, it helps understand why the sufficient statistics works.
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A heterogeneous-firm business cycle model with cash
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Before the model section

▶ What are the economically meaningful nonlinear dynamics?
– Many of firm-side decisions are highly nonlinear.

– Firm-level lumpy investments; Cash dynamics
▶ A corporate cash holding model is an immediate firm-side counterpart of the heterogeneous-household models

(Krusell and Smith, 1998)

▶ The repeated transition method can accurately solve the equilibrium dynamics:
– Detailed analysis on the macroeconomic role of the nonlinear dynamics.

▶ A representative-agent model framework is also in the future research agenda:
– Nonlinear dynamics of the SaM models in NK framework.

– NK framework with a zero lower bound without approximation.
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Rising corporate cash holdings
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▶ Cash is from the Flow of Funds; GDP is from NIPA.
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Overview of the model economy

Firms

Heterogeneous firms holding cash operate using only labor

Costly external financing

Household

A representative household consumes, works, and saves (claim for all firms).

Competitive market
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Costly external financing
▶ Why does a corporate save?

– Precautionary motivation (future financial constraint)
– Dividend smoothing motivation
– Frictional external financing
– Agency cost

▶ An external financing cost is one way of capturing the corporate saving glut (Riddick and Whited,
2009)

C(d) :=
µ

2
I{d < 0}d2

Note: The net dividend is dit −
µ
2 I{dit < 0}d2

it : A temporal component of the objective function
belongs to C1.

▶ Internal financing is cheaper than external financing:

Rss = 1/β − 1 > Rca

▶ Cash is an internal asset of a firm and NOT PRICED in the market.
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Recursive formulation

▶ Heterogeneous firms operate using only labor; pay out dividends; and save cash.

[Firm] J(ca, z;X ) = max
ca′,d

d − C(d) + E(q(X ,X ′)J(ca′, z ′;X ′))

s.t. d +
ca′

1 + rca = π(z;A,Φ) + ca

ca′ ≥ 0, Φ′ = G(Φ,A)
[Operating profit] π(z;A,Φ) := max

n
zAnγ − w(A,Φ)n − ξ

[Idiosyncratic productivity] z ′ = Gz(z) (AR(1) process)

[External financing cost] C(d) :=
µ

2
I(d < 0)d2

[Aggregate state] X := {A,Φ}

A stand-in household holds the dividend claim of all the firms.
Calibration
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Optimal saving decision

Proposition 2 (The existence of target cash stock)
Suppose policy functions are non-trivial: ca′(ca, z) > 0 and d(ca, z) > 0 for some ca > 0, given z .
Then, there exists ca(z) > 0 such that ca′(ca, z) ≤ ca(z) for ∀ca ≥ 0.

Suppose a firm has abundant cash stocks where there is no concern about tomorrow’s dividend being
negative:

d + qcaca′ = π(z;S) + ca︸ ︷︷ ︸
Liquidity on hands

The marginal gain out of saving (∆ca′) is qss

qca < 1, while the marginal gain of dividend (∆d) is 1.

▶ Therefore, there exists a hand-to-dividend region: any extra liquidity immediately goes to
households.
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High vs. Low current productivity
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▶ The lowest-productivity firms gradually reduce the cash holdings.
▶ The highest-productivity firms gradually increase the cash holdings until the target level.
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Liquidity on hands Aiyagari1994

Liquidity on hands := π(z;S) + ca
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(a) Allocation of liquidity on hands
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(b) Evolution of liquidity on hands

Figure: Cash-holding policies in the stationary equilibrium (when z = minZ)
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Incomplete market and precautionary motivation
λ is the slackness coefficient for the borrowing limit ca′ ≥ 0.

1 − µI{d̂ < 0}d̂ =
qss

qca EJ1(ca′, z ′) +
λ(ca, z)

qca

=
qss

qca E

(
qss

qca EJ1(ca′′, z ′′) +
λ(ca′, z ′)

qca

)
+

λ(ca, z)
qca

=
qss

qca E

(
qss

qca E

(
qss

qca EJ1(ca′′′, z ′′′) +
λ(ca′′, z ′′)

qca

)
+

λ(ca′, z ′)

qca

)
+

λ(ca, z)
qca

= . . .
▶ The slackness condition increases the marginal benefit of cash holding. (LHS)

– The current coefficient λ(ca, z) shifts down the dividend. (increase in cash holding)
– Despite λ(ca, z) = 0, the future possibility of binding constraint shifts down the dividend. (increase in

cash holding)
▶ If all firms are with enough cash, the economy converges to the canonical RBC world.
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Dynamic Stochastic General Equilibrium
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The aggregate uncertainty
▶ As in Krusell and Smith (1998),

ΓA =

[
0.8750 0.1250
0.1250 0.8750

]
A ∈ {0.99,1.01}.

where the unit period is a quarter.

▶ The aggregate shock is simulated for 1,000 periods.

▶ I use the histogram method (Young, 2010) for the forward evolution of the firm distribution.

▶ Solve the dynamic stochastic general equilibrium using the repeated transition method
– Aggregate cash holding is the sufficient statistics to be used.

▶ Then I do: 1) Solution; 2) Recovering the true law of motions; 3) Out-of-sample fitting; 4)
Monotonicity check

Hanbaek Lee (U of Tokyo) Solving DSGE Models Without a Law of Motion:An Ergodicity-Based Method and an Application



Nonlinear business cycle
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Figure: Aggregate fluctuations in the economy

When fitted into the log-linear law of motions:
log(CAt+1) = −0.5742 + 0.9061 ∗ log(CAt ), if St = B, and R2 = 0.9971, MSE = 0.0017

log(CAt+1) = −0.8949 + 0.6829 ∗ log(CAt ), if St = G, and R2 = 0.9823, MSE = 0.0039

log(pt ) = 1.3232 − 0.0018 ∗ log(CAt ), if St = B, and R2 = 0.8828, MSE = 0.0000

log(pt ) = 1.3093 − 0.0011 ∗ log(CAt ), if St = G, and R2 = 0.8928, MSE = 0.0000
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The history-dependent nonlinear dynamics

Goodness of fitness: R2

# of lagged order CAt+1 : Good CAt+1 : Bad pt : Good pt : Bad

Contemp. 0 1 0.8956 0.9452 0.9922 0.9966
0 2 0.9839 0.9952 0.9927 0.9976
0 3 0.9973 0.9995 0.9930 0.9976
0 4 0.9993 0.9999 0.9932 0.9976
0 5 0.9996 1.0000 0.9933 0.9976

Add. history 1 3 0.9999 1.0000 0.9987 0.9979
2 3 0.9999 1.0000 0.9997 0.9984
3 3 0.9999 1.0000 0.9998 0.9987
4 3 0.9999 1.0000 0.9998 0.9991
5 3 0.9999 1.0000 0.9998 0.9994
6 3 0.9999 1.0000 0.9998 0.9996
7 3 0.9999 1.0000 0.9998 0.9997

Table: The fitness of law of motion across different specifications
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Out-of-sample fitting
▶ I test the validity of the law of motions that utilizes historical allocations using the out-of-sample

simulation.
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Figure: Fitting into the out-of-sample path
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Monotonicity of value function in the aggregate state
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(a) Individual cash = 1e-8
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(b) Individual cash = 0.09
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(c) Individual cash = 0.23
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Figure: Monotonicity of value function in aggregate cash stockHanbaek Lee (U of Tokyo) Solving DSGE Models Without a Law of Motion:An Ergodicity-Based Method and an Application



Macroeconomic implications
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State-dependent responsiveness: Model
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(a) Negative shock
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(b) Positive shock

Figure: State-dependent shock responses of consumption
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State-dependent responsiveness: Model

Dep. Var.: |log(ct )| (p.p.)

Neg. Pos.
(1) (2)

Casht−1(s.d .) -0.166 0.07
(0.001) (0.001)

Constant Yes Yes
Observations 83 84
R2 0.996 0.994

Table: State-dependence consumption responses to negative and positive shocks

▶ State-dependent asymmetric responsiveness (hysteresis):
– Past cash holding decreases the responsiveness of consumption to the identical negative TFP shock.
– Past cash holding increases the responsiveness of consumption to the identical positive TFP shock.
– The insurance effect is asymmetric: a stronger insurance effect on the negative shock.

▶ Model prediction is well-supported by the data.
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This is a recent phenomenon

Dependent variables:

|log(ct )| (p.p.) before 1980 |log(ct )| (p.p.) after 1980

Neg. Pos. Neg. Pos.
(1) (2) (3) (4)

Casht−1(s.d .) -0.108 0.036 -0.226 0.164
(0.09) (0.072) (0.085) (0.09)

Constant Yes Yes Yes Yes
Observations 63 49 77 79
R2 0.023 0.005 0.086 0.041

Table: State-dependence consumption responses to negative and positive shocks: Before vs. After 1980

▶ State-dependent asymmetric responsiveness:
– The magnitude is similar to the model counterpart.
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Concluding remarks

▶ The repeated transition method solves nonlinear heterogeneous-agent models with aggregate
uncertainty accurately,

– globally,

– without a parametric law of motion,

– without perfect foresight,

– with a speed gain under the presence of non-trivial market clearing conditions.

▶ A corporate cash holding behavior leads to highly nonlinear aggregate dynamics, providing a
consumption insurance to households through the dividend channel.

– This is a relatively recent phenomenon in the data.

– Casht−1 ↑ by 1 s.d . → |∆ct | ↓ by 0.17 (p.p.) (negative shock)

– Casht−1 ↑ by 1 s.d . → |∆ct | ↑ by 0.12 (p.p.) (positive shock)
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Appendix
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Aiyagari (1994) Back

Notes: The figure is from Aiyagari (1994).
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Calibration

▶ Three parameters are calibrated.

Parameters Target Moments Data Model Level
µ Corporate cash holding/Output (%) 10.00 9.28 0.40
ξ Consumption/Output (%) 66.00 64.02 0.15
η Labor supply hours 0.33 0.34 3.90

Table: Calibration target and parameters

Hanbaek Lee (U of Tokyo) Solving DSGE Models Without a Law of Motion:An Ergodicity-Based Method and an Application


	Appendix

