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Background: Heterogeneous firm models

>
>

>

Prescott and Kydland (1982): Time-to-build for capital investment

Hopenhayn (1992): stationary equilibrium distribution of firm-level allocations: entry,
exit, and size.
Capital adjustment cost

— Abel (1983): Convex capital adjustment cost
— Cooper and Haltiwanger (2006): “The Nature of Capital Adjustment Costs"
Lumpy investment
— Caballero and Bertola (1994), Caballero and Engel (1999), Abel and Eberly (2002)
— Khan and Thomas (2008), Khan and Thomas (2003): Strong GE effect
— Bachmann et al. (2013), Winberry (2021), Koby and Wolf (2020), Lee (2022): Weak GE
effect
Heavy tail distribution
— Gabaix (2009): A heavy-tail of the firm size distribution
Financial friction
— Bernanke and Gertler (1989), Kiyotaki Moore (1997), Brunnermeier and Sannikov (2014)
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Background: Khan and Thomas (2008)

» Khan and Thomas (2008) studies heterogeneous establishments (c.f., firms) under the
aggregate productivity fluctuations.

An improved investment-to-capital distribution compared to Khan and Thomas (2003).
Establishment-level nonlinear investment dynamics: (S, s) cycle.

Macro-level log-linear investment dynamics: strong general equilibrium effect.

vvyyy

Basic ingredients:

— Heterogeneous idiosyncratic productivity process under the incomplete market
(time-to-build).

Aggregate TFP fluctuations (Krusell and Smith, 1997).

— The fixed cost, & ~;iy Unif[0,£]: smoothing the kink of the value function.

A small-scale investment is allowed, which is not subject to a fixed cost.
Value function normalization steps.

Non-trivial market clearing condition.

Representative household and competitive factor market.
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Establishment-level production

» At the beginning of period t, a firm i is given with (kjt, zj; St):
— ki+: Pre-determined establishment-level capital stock.
— zj: Establishment-level idiosyncratic productivity (AR(1) process).
- 5 = {A:, ®:} : A; is aggregate productivity (AR(1) process); ®; is the distribution of

individual establishments.
» Cobb-Douglas production function with DRS (a + v < 1) where labor demand is
contemporaneously determined:

f(kita Zit, St) = Atzit(kit)anz»
> Operating proflt due to DRS: 7r(k,'t,z,-t; St) = MmaXp,, f(k,’t,z,-t; 51_-) — Wehijt
» Operating profit = Dividends (D;;) + Investment (/;)

» The objective function is maximizing the firm value:

It = maX
{Die}220 =5 Rt
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Establishment-level investment
» A firm needs to decide kj:+1 by choosing /3.
k,‘t+1 = (1 - 5)kit + e
Two options in the investment scale: large/small
If i € Q(kit) := [vki, vkit], then there is no fixed cost. (v < §)
If I & Q(ki) := [vkir, vkic], then a fixed cost & ~ia Unif([0,€]): Why?

Role of fixed adjustment cost:

vvyyvYyy

— Inaction period: no lumpy investment - inside the (S, s) cycle.
— Large adjustment: Jumping from s to S.
» No convex adjustment cost in Khan and Thomas (2008) but Winberry (2021) introduces a convex
adjustment cost.
» Role of convex adjustment cost:
— When your productivity jumps from 1 to 1.5, the unconstrained optimal level of future
capital jumps identically across the different size of firms.
— Without the convex adjustment cost, the capital stock of small firms can immediately
jump up to the optimal level, being a sudden large firm.
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Household

A representative household consumes, supplies labor, and saves.

V(a;S) = max log(c) — nly + BEV(a’; S')
c,a’,ly

s.t. c—|—/F575/q(S,S')a(5’)dS/ = W(S)/H+/a(5)d5
Gs(S) =9, Ga(A)=A, S={b A}

P> a: an equity portfolio, ®: distribution of firms
A: aggregate productivity, ¢: consumption
a’: a state-contingent future saving portfolio, /y: labor supply (indivisible)

q: state-contingent bond price, w: wage
» Household is holding the equity of firms as their wealth.
» Stochastic discount factor:
c($)

q(svsl) = BC(S/)

Khan and Thomas (2008) defines p(S) := which will be extensively used after the normalization.

1
sy
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Recursive formulation

3
J(k,z;S) = 7T(k,z;5)—|—(1—5)k—|—/0 max {R"(k,z; S) — w(S)&, R°(k, z; S)} dGe (&)

R*(k,z;S) = max —k" — c(k, k") +Em(S,S)J(K',Z';S")
R(k,z;S) = kcf(lrpaa));fen(k) —k —c(k, k) +Em(S,S")J(k,2";S)
(Operating profit) 7(z, k; S) := maxzAk®n] — w(S)ng (ng: labor demand)
ng
(Constrained investment) 19€ Q(k) == [k, kv] (v <)
(Convex adjustment cost) c(k, k") == (;//2) (K —(1- <5)k)/k)2 k
(Khan and Thomas (2008): 1 = 0)
(Idiosyncratic productivity) 7' = G,(z) (AR(1) process)
(Stochastic discount factor) m(S,S") = B (C(S)/C(S"))
(Aggregate states) S={A o}
(Aggregate law of motion) @' = H(S), A" = Ga(A) (AR(1) process),
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National accounting

» National account tracking is important for the efficient GE computation.

Y =C+1=C+(l+ Adj.Cost)

C=Y-1I
=(M+WxL)—1
=M=+ WxlL

= D + WL
~—~— ——
Dividend income  Labor income

» Therefore, consumption is total dividends plus total labor expenses.

> After obtaining the distribution of firms, we compute total dividend and labor expense.
Then, we obtain the consumption.

» Why does consumption matter? It determines w(S) and g(S,S’): next slide.
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Non-trivial market clearing condition

» From the intra-temporal labor supply optimality condition:

n = Au(S); S)w(S)
= p(S)w(S)

» Therefore, if p(S) is known, then w(S) is determined. (What if GHH utility?)
» We still need to know SDF, ¢(S,S’), to solve the problem.

» However, the following slide’s normalization eases the problem: p(S) is the only price!
» Where is p(S) is determined?
— There is no closed-form to determine P(S).
— The notorious internal loop:
1. Guess p(S).
2. Using the given distribution, ®(S) compute the aggregate consumption
c(S) = D(S) + W(S) * L(S).
3. Compute p“P®*(S) = 1/c(S), and repeat the steps until ||p(S) — p“P®*(S)|| < tol
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Normalization
Multiply p(S) = 1/C(S) on the both sides of the value function identity.

€
p(S)(k,z;S) = p(S)(m(k, 2z S) + (1 — )k) +/O max {p(S)R"(k, z; S) = p(S)w(S)¢, P(S)R(k, z: 5)} dGe(€)
Define (J, R*, R°) as follows:
J(k,z;S) == p(5)J(k, z; )

R*(k,z;S) := p(S)R"(k,z: S) =max (—k"—c(k, k)p(S) +Ep(S)q(S, S)I(K', 2'; S")
= max (—k' — c(k, K'))p(S) +EBp(S)J(K',Z'; S)
= max (—k" —c(k,K)p(5) + ESJ(K,Z; ")
R°(k,z;S) := p(S)R°(k,z; S) = ( kS — c(k,k°))p(S) + EBJ(kS, 2 S")

T oke—(1- 6k € (k

It is necessary to check whether the recursive form is preserved for the normalized value functions.

~ 3 ~ ~
J(k, 2 S) = p(S)(n(k, z; S) + (1 — 6)k) +/ max {R*(k,z; S) — P(S)w(S)¢, R (k, z; 5)} dGe (€)
0
» Thanks to this normalization, we only need to track p(S) instead of ¢(S,S’).
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Smoothing the kink and the extensive margin
3
|| max (R (k. 2:5) - w(S)E. Re(k.2:5)) dGile) o
0

Then, there exists {*(k, z; S) such that
R*(k,z;S) — w(S)¢ > R(k,z;S) if & <&(k,z;S)
R*(k,z;S) — w(S)¢ < R%(k,z;S) if&>¢&%(k,z;S)

Especially, £*(k,z;S) = R*(k.ziS)-R(k.2iS) s the closed-form characterzation.

w(S)
> In the support of &, [0,&) corresponds to large-scale investment and [£*, ]
corresponds to small-scale investment: define ¢(k, z; S) := M

» With probability ¥(k, z; S), a firm makes a large-scale investment.
» Eq (1) becomes a linear combination form: No Kink! (c.f., Discrete choice model)

w(k,z;S) (R*(k,z; S)— W(S)g*(k’22'5)> +(1—-9Y(k,z;5)) (R (k,z95)).
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Recursive competitive equilibrium

(gc, &2, ity BK* > Bke s 8e* , Bnys \77 J~, ﬁ*, ﬁc, p, w) is a recursive competitive equilibrium if the following
conditions are satisfied.

1. g, gH, V and g, solves the household's problem.
2. gk*, 8ke, 8=, 8y, JN, R*, and R® solve a firm's problem.
3. Market Clearing:

(Labor Market)  gni(®: S) = / (gnd(k,2;5)+ (gs*(kg,z; 5)) (gg*(kz,z; 5)) k<> do

(Product Market) ge(®;S) = / (zAko‘gnd(k,z;S)'y

- ((gk* (k.2 5) — (1= 0)k) + c(k, i (k. 23 5))> #

(ge (K, 2: S) — (1 — 6)k) + c(k, gee (k, z; 5))> “&f“zsv do

4. Consistency Condition:
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Computation
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Roadmap

» The following is the roadmap for computation section.

1. Set the parametric law of motion: assumption
2. Guess the parameters: #(S) x 2 x 2
3. Solution (optimization)

»> VFI/PFI/EGM/Projection method
> Interpolation

4. Simulation and internal loop for price p

> Simulation
> Aggregation
» Update p until convergence

5. Update the parameters
6. After convergence, verify the assumption

» After this, we will talk about more recent developments.
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Basic setup

The basic steps.
» Set directories

> Set parameters (might be a function argument)

Then, two important steps follow.

> Setting grid points.

— Individual capital grid

— Aggregate capital grid: this grid can be sparse (5~10 grids)
» Discretizing idiosyncratic shock process (Markov chain)

— Tauchen method
— Rouwenhorst method
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Parametric law of motion

There are two layers of choices:

» First, we need to set what are sufficient statistics to characterize the dynamics of the
individual state distribution.

— A good candidate is the first moment of the endogenous individual state.
— As in Krusell and Smith (1998), by tracking only K;, the aggregate prices are also
characterized (Median also works well).

» Then, we need to decide the parametric form of the law of motion.

» So start from the following parameter guesses (Ozg,ﬂé; ag,ﬁg)
log(Kiy1) = of + Klog(K:) when S, =S
log(p:) = e + f2log(K:) when Sy =S

» K; does not immediately give p; (no closed-form). But it should give some inference
on p;!
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Computation - GE: Solution
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Value function iteration with accelerator

Now we know p(S), if we are given with K. The pseudo code is as follows:

1. Guess J(W K x Z x Ax K" - R
2. Solve for the policy function, g,E”) (using monotonicity: glgn) > gé") for k > ;)
— We have K, so we know (p, K’) from the law of motion.

— Interpolate the value functions over K’ to have J(")(.,z/; A', K')

— Then, the problem becomes a typical VFI.

3. Update J("*1) using the policy function, g,gn).

4. Update J("t2) using the policy function, gﬁ”).
5. Update J("™) ysing the policy function, g,gn).

6. Check if ||J(rtm) — Jlntm=1)|| /< Tol
— If yes, the solution converged.
— If no, go back to step 1.

Hanbaek Lee (University of Cambridge) Lecture 4: Heterogeneous firm models



Computation
0000008000

Computation - GE: Simulation
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Non-trivial market clearing condition (Revisited)
We use a non-stochastic iteration method. (Eigenvalue method is not feasible).

» Simulate a long enough aggregate shock path using I's. (Not idiosyncratic shocks)

» Start from an initial guess Hg. Compute the corresponding Ky. And then internal loop.
— Guess pg, and solve the problem to get ggo and gjp.
— Compute ¢y using (Ho, &do, &0, Wo)-
~ Compute piP%* = 1/cy, and repeat the steps until ||po —
~ So, we have (Ko, p5°"*=?).

pePte|| < tol.

> Let Hg evolve to H; using gaonverged and compute the corresponding Kj.

— Guess pp, and solve the problem to get gyg1 and gj1.
— Compute ¢ using (Hz1, &d41, &1, W1).

— Compute pP% ™ = 1/¢;, and repeat the steps until ||p; — pP%*|| < tol.
~ So, we have (Ki, p&™ereed),

>

> By repeating this process, we obtain {K;, pf>™ 8} T

> Discard the the burn-in period to get {K;, pf>™ &\ T, .
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Updating the parameters

converged\ T T
> We have {Kt’pt }t:burnln and {St}t:bumln'

P> Fit the time-series into the parametric form of the law of motion to estimate the
parameters: (af, BE; a2, B)

log(Kes1) = af + 8¥log(K;) when S, =S
log (ponveeed) = o + BLlog(K:) when S; =S

» If the parameter estimates are not close to the guess, return to the initial step.
» Otherwise, the solution is converged.
» Check R? as the first check for the validity of the parametric form.
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Close-to-perfect aggregation

TABLE A.IT
FORECASTING RULES IN FULL LUMPY MODEL

Productivity® Bo Bi S.E. Adj. R?
A. Forecasting m

z; (119 obs) 0.009 0.800 0.15e—-3 1.0000
2> (298 obs) 0.016 0.798 0.22e-3 0.9999
23 (734 obs) 0.023 0.796 0.23e—3 0.9999
2,4 (1,208 obs) 0.030 0.795 0.26e—3 0.9999
25 (1,682 obs) 0.037 0.794 0.27e-3 0.9999
25 (1,871 obs) 0.044 0.079 0.28¢—3 0.9999
27 (1,706 obs) 0.051 0.793 0.26e—3 0.9999
2g (1,237 obs) 0.058 0.792 0.24e-3 0.9999
2y (751 obs) 0.065 0.792 0.23e—-3 0.9999
210 (295 obs) 0.072 0.791 0.25¢—3 0.9999
211 (99 obs) 0.079 0.791 0.19e-3 0.9999
B. Forecasting p

2z (119 obs) 0.994 —0.397 0.03e—3 1.0000
2, (298 obs) 0.986 —0.395 0.04e—3 1.0000
23 (734 obs) 0.977 —0.394 0.04e—3 1.0000
24 (1,208 obs) 0.968 —0.393 0.05e—3 1.0000
25 (1,682 obs) 0.958 —0.392 0.05e—3 1.0000
26 (1,871 obs) 0.949 —0.391 0.05e—3 1.0000
27 (1,706 obs) 0.940 —0.389 0.05e—3 1.0000
25 (1,237 obs) 0.931 —0.388 0.05e—3 1.0000
2o (751 obs) 0.921 —0.386 0.04e—3 1.0000
219 (295 obs) 0.912 —0.384 0.05e—3 1.0000
233 (99 obs) 0.903 —0.382 0.04¢—3 1.0000

2 Forecasting rules are conditional on current aggregate total factor productivity z;. Each regression takes the form
log(y) = By + B1log(my ), where y =m] or p.

Notes: The table is from Khan and Thomas (2008).
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Summary

» Khan and Thomas (2008) provides a great benchmark to start with.
— The micro-level non-linearity washes out if the general equilibrium effect is strong enough.
— Strength of the general equilibrium effect depends on the price-elasticities of agents.
— Avre the price-elasticities at an empirically-supported range?
» The normalization technique is a great idea: See Winberry (2021) and Lee (2022).
» Thanks to the close-to-perfect aggregation, the algorithm of Krusell and Smith (1997)
perfectly works.
— The log-linear law of motion of sufficient statistics perfectly governs the aggregate
dynamics.
— No closed-form for p(S): the internal loop is needed at a computational cost.
» What about financial frictions?

— Consult with Ferreira, Haber, and Rérig (2021).
— Real friction vs. Financial friction
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Recursive competitive equilibrium: consistency condition

(Consistency) Go(®) = H(®) = @', where for VK’ C K and Z’ € Z,

®'(K',2') = / Moz (H{gk*(k,z;s) e etk )

+ Hgwe(k. z;S) € K}l—gfé’us)> o
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