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Background: Heterogeneous agent model in continuous time
I The long history of continuous-time modeling in finance.

– Partial differential equation from Physics.
– Ito’s lemma.
– e.g., Black-Scholes option pricing model.
– Utility-free arguments based on no-arbitrage conditions (option pricing is doable with the

given price).
I Recent development in continuous-time modeling in macro:

– Macro with the financial sector: Brunnermeier and Sannikov (2014).
– Search and match (OTC market): Duffie, Garleanu, and Pedersen (2005).
– Incomplete market: Moll et al. (2021)

I Pros:
– Tractability: the dynamics is characterized by a PDE.
– Independence from shock orders: everything happens instantaneously with a probability.
– Computational efficiency (next slide).

I Cons:
– The unit of time is unmatched with the data side.
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Background: Moll et al. (2021)
I In the end, very similar to the discrete model approach:

– Solution = Hamilton-Jacobi-Bellman equation (HJB).
– Simulation = Kolmogorov Forward equation (KF).

I Computational gain:

– Side-stepping borrowing constraint.
– Tomorrow = Today, thus FOC becomes static.
– Sparse linear system: computation is faster with numbers only around the diagonal.
– Solution (HJB) immediately gives the distribution (KF).

I This is similar to the non-stochastic eigenvector method.
I But in continuous time, it becomes more immediate.

I We will use Finite-Difference (FD) method, which converges to the viscosity solution
under certain conditions. (Unfortunately, no closed form in the full model.)

I Sparse matrix: computationally very easy to handle.

I A restrictive assumption can lead to a closed-form solution.
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Discrete to Continuous
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Continuous modeling 101 - Sequantial formulation
I Unit period length: ∆
I All flows are now expressed in terms of rate. (e.g., temporal utility = u(ct)∆)
I Control variables: saving, st and consumption, ct

v(a) = max
{ct}∞t=0

∞∑
t=0

(
1

1 + ρ∆

) t
∆

u(ct)∆

Take ∆→ 0. Then,

lim
∆→0

(
1

1 + ρ∆

) t
∆

= lim
∆→0

(
(1 + ρ∆)

1
∆

)−t
=

(
lim

∆→0
(1 + ρ∆)

1
∆

)−t
= e−ρt

As
∑∞

t=0 ∆ becomes a Rieman integration, the following equation holds:

v(a) = lim
∆→0

max
{ct}∞t=0

∞∑
t=0

(
1

1 + ρ∆

) t
∆

u(ct)∆ = max
{ct}

∫ ∞
0

e−ρtu(ct)dt
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Continuous modeling 102 - Recursive formulation
I Unit period length: ∆
I All flows are now expressed in terms of rate. (e.g., temporal utility = u(ct)∆)
I State variable: wealth, at
I Control variables: saving, st and consumption, ct

vt(at) = max
ct ,st

u(ct)∆ +
1

1 + ρ∆
vt+∆(at + st)

s.t. ct∆ + st = atrt∆

I Denote the optimal choices as ŝt and ĉt
I Divide the both sides of the budget constraint by ∆:

ct +
st
∆

= atrt

I Define the optimal average saving rate gt := ŝt
∆ .
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Average rate of value change
Using the optimal allocations, we can rewrite the bellman equation:

vt(at) = u(ĉt)∆ +
1

1 + ρ∆
vt+∆(at + gt∆)

Move the left-hand side term to the right.

0 = u(ĉt)∆ +

future value︷ ︸︸ ︷
1

1 + ρ∆
vt+∆(at + gt∆)−

original value︷ ︸︸ ︷
vt(at)︸ ︷︷ ︸

total value variation in p.v. over time ∆

Divide both sides by ∆ > 0.

0 = u(ĉt)︸ ︷︷ ︸
Instantneous utility rate

+
1

∆

(
1

1 + ρ∆
vt+∆(at + gt∆)− vt(at)

)
︸ ︷︷ ︸

Average rate of value change
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Instantneous rate of value change: ∆→ 0
Take ∆→ 0.

0 = u(ĉt)︸ ︷︷ ︸
Instantneous utility rate

+ lim
∆→0

1

∆

(
1

1 + ρ∆
vt+∆(at + gt∆)− vt(at)

)
︸ ︷︷ ︸

Instantneous rate of value change

Define h(∆) := 1
1+ρ∆vt+∆(at + gt∆). Note that h(0) = vt(at).

0 = u(ĉt)︸ ︷︷ ︸
Instantneous utility rate

+ lim
∆→0

h(∆)− h(0)

∆− 0︸ ︷︷ ︸
Instantneous rate of value change

= u(ĉt)︸ ︷︷ ︸
Instantneous utility rate

+ h′(∆)|∆=0︸ ︷︷ ︸
Instantneous rate of value change
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Instantneous rate of value change: ∆→ 0 (cont’d)

From the chain rule,

h′(∆) =− ρ

(1 + ρ∆)2
vt+∆(at + gt∆)

+
1

1 + ρ∆

∂

∂∆
(vt+∆(at + gt∆))

+
1

1 + ρ∆

∂

∂at
(vt+∆(at + gt∆)) gt

We project h′(∆) onto ∆ = 0:

h′(∆)|∆=0 = −ρvt(at) + v̇t(at) + v ′t(at)gt

where v̇t(at) = ∂vt(at)
∂t .
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Hamilton-Jacobi-Bellman (HJB) equation
Therefore,

0 = u(ĉt)− ρvt(at) + v̇t(at) + v ′t(at)gt

= u(ĉt)− ρvt(at) + v̇t(at) + v ′t(at)(atrt − ĉt).

In the conventional form,

ρvt(at)︸ ︷︷ ︸
Instantaneous value rate

= u(ĉt) + v̇t(at) + v ′t(at)(atrt − ĉt).

which is a PDE.
I What’s PDE?

– An equation that relates partial derivatives of unknown function (v) with respect to
independent variables (a, t): a is spatial and t is time.

– Infinite number of solutions to PDE without boundary + initial conditions:
I Boundary conditions: vt(a) = φt(a) (Sum of orders of highest partial derivatives in each

spatial variable = 1)
I Initial condtiion(s): v0(a) = v0 (Highest order of time derivative = 1)
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Basic problem
With the max operator, everything follows smoothly. Now, we can formulate the problem as
follows:

ρvt(a) = max
ct

u(ct) + v ′t(at)(atrt − ct) + v̇t(at)

In a stationary environment, what we impose is

vt(a) = v(a) for ∀(a, t) and lim
T→∞

e−ρT v(a) = 0 for ∀a (TVC).

These are equivalent to the initial and boundary conditions. Then, we have

ρv(a) = max
c

u(c) + v ′(a)(ar − c)

Time does not matter anymore like a static problem: This is what Moll et al. (2021) calls
as, “Today is tomorrow.”
I Under the stationarity, the problem reduces down to ODE!
I This problem with CRRA utility has a closed-form solution.

– e.g., log-utility: c(a) = ρa and v(a) = 1
ρa + constant
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Model
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Revisiting Aiyagari (1994)
I We consider the incomplete market economy as in Aiyagari (1994).
I The economy stays in the stationary environment.
I A borrowing constraint: at ≥ 0.
I For now, let’s assume a Poisson endowment process z1 < z2 where a jump from state i

to the other happens at the intensity of λi .

vi (a) = max
c,s

u(c)∆ +
1

1 + ρ∆
((1− λi )vi (a + s) + λivj(a + s))

s.t. c∆ + s = wzi∆ + ar∆

a + s ≥ 0

I Note that there is no time index as the stationarity is already applied.
I Consider the following rearrangement:

vi (a) = max
c,s

u(c)∆ +
1

1 + ρ∆
(vi (a + s) + λi (vj(a + s)− vi (a + s)))
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Hamilton-Jacobi-Bellman equation
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Hamilton-Jacobi-Bellman equation (HJB)

ρvi (a) = max
c

u(c) + v ′i (a)(wzi + ar − c) + λi (vj(a)− vi (a))

where a ∈ [0,∞)
I The poisson process can be generalized to Ornstein-Uhlenbeck process which is a

continuous-time counterpart of AR(1) process (Drift + Brownian terms).
I We will solve this equation using FD.
I Now, we have a state boundary condition a ∈ [0,∞).
I FOC gives

u′(ci (a)) = v ′i (a)

I At the boundary a = 0, optimal saving needs to be non-negative:
wzi − c ≥ 0 =⇒ wzi ≥ c .

I Thus, boundary condition for ODE: v ′i (0) = u′i (c(0)) ≥ u′(wzi ).
I The occasionary binding constraint shows up only as a boundary condition: the

side-stepping.
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Kolmogorov Forward equation
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Kolmogorov Forward equation (KF)
I Also known as Fokker-Planck equation.
I Stationary probability density gi (a) solves the following ODE:

d

da
(si (a)gi (a)) = −λigi (a) + λjgj(a)

where si (a) = (wzi + ar − ci (a)).
I It is from stationary cumulative distribution Gi (a) that solves

Ġi (a) = 0 = − si (a)gi (a)︸ ︷︷ ︸
Variation in the border

− λiGi (a)︸ ︷︷ ︸
Jump outflow

+ λjGj(a)︸ ︷︷ ︸
Jump inflow

I Note that si > 0 implies moving out of Gi (a).
I Formal derivation: Moll et al. (2021) online supplementary data B.3.
I From the solution si we obtained from FD, we will solve gi .
I But, surprisingly, by solving si , gi is already given! (In computation section)
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Market clearing condition
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Market clearing condition
I The aggregate capital K can be obtained from the following equation:

K =
∑
i=i ,2

∫ ∞
0

agi (a)da

r(Φ) = MPK (Φ)− δ = α

(
K (Φ)

L

)α−1

− δ

w(Φ) = MPL(Φ) = (1− α)

(
K (Φ)

L

)α
where L =

∑
i=1,2

zi
∫∞

0 gi (a)da is exogenously given. Why?

– Poisson rate gives the stationary marginal distribution of labor productivity.
– Let x be the stationary mass of state 1.
– xλ1 = (1− x)λ2 should hold under the stationarity.
– x = λ2

λ1+λ2
=
∫∞

0
g1(a)da.
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Computation
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Roadmap

I Computation steps are even simpler than in discrete time models.

I We will compute SRCE where we rely on tracking Kt .

I The following is the roadmap for the computation section.

1. Price (aggregate allocation) guess

2. Solution (optimization)

I Finite difference method for HJB equation

I Viscosity solution

3. Simulation

I The transpose problem (adjoint relationship)

4. Aggregation

5. Price update
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Basic setup

I Set directories

I Set parameters (might be a function argument)

Then, two important steps follow.

I Setting grid points.

– Moll et al. (2021) uses equi-spaced grids but finer grids for smaller wealth also work.

I Setting idiosyncratic labor productivity process:

– Poisson densities {λ1, λ2} need to be determined.
– Labor productivities {z1, z2} need to be determined.

I Define size of value funtion: (2 ∗#wealthgrid)× 1.
I Define size of stationary distribution: (2 ∗#wealthgrid)× 1.

– Both are vectorized!
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Price guess

I We need to come up with a price (an aggregate allocation) as an initial guess.

I Consistent with the previous lectures, let’s start with K .
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Computation - GE: Solution
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Computation strategy

Using the first-order condition, the following is the summary of the problem:

ρvi (a) = u(u′−1(v ′i (a))) + v ′i (a)(si (a)) + λi (vj(a)− vi (a))

0 = − d

da
(si (a)gi (a))− λigi (a) + λjgj(a)

where si = wzi + ar − u′−1(v ′i (a)). We translate this problem into the following problem:

ρv = u(v) + A(v ;K )v

0 = A(v ;K )Tg

How? By a clever “discretization”. So this is not a theoretical outcome.

I Potentially applicable to other problems!

Hanbaek Lee (University of Cambridge) Lecture 3: A heterogeneous household model in continuous time



Introduction Discrete to Continuous Model Computation Concluding remarks

Finite difference (FD) method

We will approximate v ′i using a finite difference between two grid points.
Denote ∆ as the distance between the points.

v ′i (a) u
vi (a)− vi (a−∆)

∆
(Backward)

v ′i (a) u
vi (a + ∆)− vi (a)

∆
(Forward)

v ′i (a) u
vi (a + ∆)− vi (a−∆)

2∆
(Central difference)
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Different FD methods

Notes: The figure is from Benjamin Moll’s lecture note.
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Upwind scheme
We take

I forward difference whenever drift of state variable, s is (+)

I backward difference whenever drift of state variable, s is (−)

That is,

ρvi (a) = u(u′−1(v ′i (a))) +
vi (a + ∆)− vi (a)

∆
s+
i (a) +

vi (a)− vi (a−∆)

∆
s−i (a)

+ λi (vj(a)− vi (a)). (1)

where s+
i = max{si , 0} and s−i = min{si , 0}

I This scheme is called “upwind scheme.”

I Why? 1) Monotonicity condition 2) Boundary conditions from both sides.

I Solution for (1) is not trivial, but we can solve it like a discrete problem. (In two slides)

I The solution converges to the unique viscosity solution (end of the lecture).
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Sparse matrix
With a slight abuse of the notation at this stage,

ρvi (a) = u(u′−1(v ′i (a))) +
vi (a + ∆)− vi (a)

∆
s+
i (a) +

vi (a)− vi (a−∆)

∆
s−i (a)

+ λi (vj(a)− vi (a)).

= f (v(a)) + A(v(a);K )v(a)

where

A(v(a);K )v(a) =

[
0 · · · ,

s+
i (a)

∆
,
−s+

i (a) + s−i (a)

∆
− λi ,

−s−i (a)

∆
, · · · , λi , · · · , 0

]
· · ·

vi (a + ∆)
vi (a)

vi (a−∆)
· · ·


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Sparse matrix (cont’d)

Notes: The figure is from Jesús Fernández-Villaverde’s lecture note.
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Solving the nonlinear problem I
The solution method utilizes the stationary condition v̇(a) = 0.

v (n+1)(a)− v (n)(a)

dt
+ ρv

(n)
i (a) = u(u′−1(v

(n)′

i (a)))

+
v

(n)
i (a + ∆)− v

(n)
i (a)

∆
s+
i (a) +

v
(n)
i (a)− v

(n)
i (a−∆)

∆
s−i (a)

+ λi (v
(n)
j (a)− v

(n)
i (a))

where si (a) = (wzi + ar − u′−1(v
(n)′

i (a))), and dt > 0 is any small number.

1. Guess v (n)

2. Compute all except for v (n+1).

3. Update v (n+1) until the convergence.

This method is called as an “explicit” method by Moll et al. (2021).
The “Implicit” method is faster thanks to the sparsity of A.
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Solving the nonlinear problem II

Now assume the following holds:

v (n+1)(a)− v (n)(a)

dt
+ ρv

(n)
i (a) = u(u′−1(v

(n)′

i (a)))

+
v (n+1)

i (a + ∆)− v (n+1)
i (a)

∆
s+
i (a) +

v (n+1)
i (a)− v (n+1)

i (a−∆)

∆
s−i (a)

+ λi (v
(n)
j (a)− v

(n)
i (a))

= u(u′−1(v
(n)′

i (a))) + A(v (n))v (n+1)

=⇒
(
ρ+

1

dt
− A(v (n))

)
v (n+1)(a) = u(u′−1(v

(n)′

i (a))) +
v (n)(a)

dt

The sparcity of A(v (n)) gives a speed boost.
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Transpose problem
Now we have the solution (v , c , s,A). Then, we need to let the distribution evolve following
KF:

0 = − d

da
(si (a)gi (a))− λigi (a) + λjgj(a)

Using the expansion of the derivative using FD, we can verify that the following equation
holds:

0 = A(v ;K )Tg

I Finding g is an eigenvector problem: the same approach as the discrete-time histogram
method using eigenvector.

I Normalize g to satisfy
∫∞

0 g1(a)da +
∫∞

0 g2(a)da = 1.
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Aggregation

I Compute the aggregate allocations using the stationary distribution gi .

Kupdate =
∑
i=i ,2

∫ ∞
0

agi (a)da

I Update the guess, K guess , until the convergence between the guess and the implied
level, Kupdate .
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The following slides are helpful for understanding Viscosity solution.
These are from the lecture slides of Jesús Fernández-Villaverde.
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Why does the method work?
I Well-developed theory for numerical solution of HJB equation using finite difference

methods.

I Barles and Souganidis (1991), “Convergence of approximation schemes for fully
nonlinear second order equations.”

I Result: finite difference scheme converges to unique viscosity solution under three
conditions

1. Monotonicity.

2. Consistency.

3. Stability.

I Good reference: Tourin (2013), An Introduction to Finite Difference Methods for PDEs
in Finance.
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Viscosity solutions, I

I Relevant notion of “solutions” to HJB introduced by Pierre-Louis Lions and Michael G.
Crandall in 1983 in the context of PDEs.

I Classical solution of a PDE:
F (x , u,Du,D2u) = 0

is a function u in Ω that is continuous and differentiable that satisfies the PDE above.

I We want a weaker class of solutions than classical solutions.

I More concretely, we want to allow for points of non-differentiability of u (in this case,
V (a)).

I Similarly, we want to allow for convex kinks in the value function V (a).

I Different classes of “weaker solutions.”

Hanbaek Lee (University of Cambridge) Lecture 3: A heterogeneous household model in continuous time



Introduction Discrete to Continuous Model Computation Concluding remarks

Viscosity solutions, II

I Subsolution: An upper semicontinuous function u in Ω is a “subsolution” of a PDE in
the “viscosity sense” if for any point x0 ∈ Ω and any C 2 function φ such that
φ(x0) = u(x0) and φ ≥ u in a neighborhood of x0, we have:

F (x0, φ(x0),Dφ(x0),D2φ(x0)) ≤ 0

I Supersolution: A lower semicontinuous function u in Ω is defined to be a
“supersolution” of a PDE in the “viscosity sense” if for any point x0 ∈ Ω and any C 2

function φ such that φ(x0) = u(x0) and φ ≤ u in a neighborhood of x0, we have:

F (x0, φ(x0),Dφ(x0),D2φ(x0)) ≥ 0

I Viscosity solution: A continuous function “u” is a “viscosity solution” of the PDE if it
is both a supersolution and a subsolution.
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Viscosity solutions, III
I Viscosity solution is unique.

I A baby example: consider the boundary value problem F (u′) = |u′| − 1 = 0, on (−1, 1)
with boundary conditions u(−1) = u(1) = 0. The unique viscosity solution is the
function u(x) = 1− |x |.

I Coincides with solution to sequence problem.

I Numerical methods designed to find viscosity solutions.

I Check, for more background, User’s Guide to Viscosity Solutions of Second Order
Partial Differential Equations by Michael G. Crandall, Hitoshi Ishii, and Pierre-louis
Lions.

I Also, Controlled Markov Processes and Viscosity Solutions by Wendell H. Fleming and
Halil Mete Soner.
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Concluding remarks
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Summary
I Moll et al. (2021) suggest a convenient computational methodology for heterogenous

household model in continuous time.

I Computations steps are not very different from the discrete-time approach, but the
efficiency gain is enormous due to the particular algorithm.

I The discretization scheme makes it easy to get the stationary distribution out of the
solution.

I On top of the computational contribution, some of the closed-form results sharply
characterize the model’s interesting features:

– Individual saving policy near the borrowing constraint in a closed-form.
– Time to binding constraint.
– Closed-form wealth distribution under certain parametric assumptions.

I Transitional dynamics can also be obtained using the FD method.

I The idiosyncratic labor productivity process can be extended to the
Ornstein-Uhlenbeck process, a continuous-time counterpart of the AR(1) process.
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