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A State-level data on infrastructure

Table A.1 summarizes the state-level data on infrastructure.

State Avg. Rank (Infra.) # Good Group Portion (Infra.) Portion (GDP) Avg. Rank (Estab.) Portion (Estab.)

New York 1.708 24.000 0.072 0.081 2.439 0.072
California 1.833 24.000 0.071 0.133 1.000 0.114
Texas 2.458 24.000 0.071 0.079 2.659 0.069
Florida 4.000 24.000 0.064 0.050 4.000 0.060
Illinois 5.000 24.000 0.049 0.046 5.341 0.044
Ohio 6.542 24.000 0.035 0.036 7.000 0.039
New Jersey 7.125 24.000 0.034 0.034 8.415 0.033
Georgia 8.458 24.000 0.032 0.029 11.171 0.027
Pennsylvania 8.708 24.000 0.032 0.040 5.561 0.044
Massachusetts 9.708 24.000 0.030 0.027 12.341 0.024
Minnesota 10.458 24.000 0.029 0.018 18.561 0.019
North Carolina 12.208 24.000 0.025 0.027 9.976 0.028
Wisconsin 13.083 24.000 0.025 0.017 17.439 0.020
Washington 14.250 24.000 0.024 0.024 14.561 0.022
Virginia 14.458 24.000 0.024 0.027 12.585 0.025
Michigan 16.083 24.000 0.022 0.030 9.024 0.032
Tennessee 16.917 24.000 0.021 0.018 19.195 0.019
Missouri 18.167 24.000 0.019 0.018 15.171 0.021
Indiana 18.833 24.000 0.018 0.019 15.171 0.021
Kentucky 20.292 24.000 0.018 0.011 27.415 0.013
Louisiana 21.333 24.000 0.017 0.014 22.805 0.015
Iowa 21.625 24.000 0.017 0.010 28.951 0.012
Arizona 22.875 24.000 0.016 0.017 23.756 0.016
Colorado 25.625 15.000 0.015 0.017 19.439 0.018
Kansas 25.833 13.000 0.014 0.009 30.829 0.011
Alabama 26.000 23.000 0.015 0.012 24.951 0.014
Maryland 26.042 11.000 0.015 0.020 20.415 0.018
Connecticut 26.542 10.000 0.014 0.016 25.951 0.014
Oklahoma 29.458 0.000 0.012 0.010 27.634 0.013
Mississippi 30.208 0.000 0.011 0.006 33.317 0.009
Oregon 30.500 0.000 0.011 0.011 25.659 0.014
South Carolina 31.917 0.000 0.011 0.011 26.634 0.013
Nevada 33.083 0.000 0.010 0.008 38.000 0.006
Nebraska 34.417 0.000 0.010 0.006 34.927 0.007
Arkansas 34.708 0.000 0.010 0.007 32.439 0.009
New Mexico 35.542 0.000 0.010 0.006 37.000 0.006
West Virginia 37.000 0.000 0.009 0.004 37.244 0.006
Utah 38.375 0.000 0.008 0.007 34.122 0.008
Alaska 39.167 0.000 0.007 0.003 51.000 0.002
Hawaii 39.458 0.000 0.007 0.005 41.854 0.005
Idaho 41.667 0.000 0.006 0.004 40.512 0.005
Montana 41.958 0.000 0.006 0.002 42.512 0.004
Delaware 42.375 0.000 0.006 0.004 47.317 0.003
Wyoming 44.167 0.000 0.005 0.002 49.707 0.003
South Dakota 45.042 0.000 0.005 0.002 45.073 0.003
Rhode Island 46.083 0.000 0.004 0.003 42.963 0.004
Maine 47.208 0.000 0.004 0.004 39.098 0.005
North Dakota 47.500 0.000 0.004 0.002 47.146 0.003
New Hampshire 49.000 0.000 0.003 0.004 39.963 0.005
District of Columbia 50.000 0.000 0.002 0.007 47.927 0.003
Vermont 51.000 0.000 0.002 0.002 47.829 0.003

Table A.1: State-level summary

Notes: Avg. Rank (Infra.) is the average time-series ranking of infrastructure (this variable is the
sorting variable). # Good Group is how many times the state belonged to the good infrastructure
group (Max:24). Portion (Infra.) is the portion of infrastructure on average. Avg. Rank (Estab.) is
the average time-series ranking of the number of establishments. Portion (Estab.) is the portion of
establishments on average.

We outline the process for constructing state-level infrastructure capital as fol-

lows: We first compute the net investment on public and private capital stocks.

3



The state-level net public investment is approximated by the portion of aggre-

gate net infrastructure investment, where the weight is obtained by the state-level

real public highway infrastructure investment from Bennett, Kornfeld, Sichel, and

Wasshausen (2020).1 This is from the assumption that the infrastructure spending

at the state level for each of the different items (e.g., highway, water supply, etc.) is

identically distributed across the states.

The state-level net private investment is approximated by the portion of aggre-

gate net non-residential fixed investment from National Income and Product Ac-

counts (NIPA) data of Bureau of Economic Analysis (table 5.2.6), where the weight

is obtained by the number of establishments at the state level from the Business

Dynamics Statistics (BDS) at the United States Census Bureau. This approxima-

tion assumes that the establishment-level capital stock does not vary significantly

across the establishments.2

After we obtain the net investment for public and private capital, we construct

public and private capital stocks using the perpetual inventory method. For this

approach, the initial capital stocks are needed for both public and private capital

stocks. The state-level initial infrastructure stock is obtained by the portion of the

infrastructure stock in 1977 from Bennett, Kornfeld, Sichel, and Wasshausen (2020),

where the weight is from the highway infrastructure spending in 1977. The state-

level initial private capital stock is from the portion of the aggregate private capital

1The aggregate net infrastructure investment is also from Bennett, Kornfeld, Sichel, and
Wasshausen (2020). In the state-level calculation, the weight is computed in the following way:

weightit =
highway infrastructure investmentit

∑i highway infrastructure investmentit

2As a robustness check, we utilize the Census-based state-level private capital data in the manu-
facturing sector, which is available from Falk and Shelton (2018). This dataset provides the private
capital k share in the good-infrastructure region as 0.83, which is close to our establishment-based
value of 0.84.
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stock in 1977 from NIPA of Bureau of Economic Analysis (table 4.1), where the

weight is from the number of establishments in 1977. All the data is at the annual

frequency. All real variables are chained in 2012 dollar value.

B Notes on the competitive equilibrium

We assume the optimal dividend payout policy fully internalizes the income tax of

households, τh. Without this assumption, there would be an inefficient allocation

of dividends, which is beyond the scope of this paper.3 Firms earn tax benefit from

tax shield out of the depreciated capital δkt.

The value function of the household is as follows:

Vt(at) = max
ct,at+1,Lt,Bt+1

log(ct)− ∑
j∈{G,P}

ωj
η

1 + 1
χ

L
1+ 1

χ

jt + βVt+1(at+1) (1)

s.t. ct +
at+1

1 + rt
+

Bt+1

1 + rB
t

(2)

= ∑
j

ωj(wjtEt + wjtLjt)(1 − τh) + Dt(1 − τh) + (at − Dt) + Tt + Bt (3)

A firms’ value function is as follows:

Jt(zt, kt, jt) =max
It,Ic

t

πt(zt, kt, jt)(1 − τc)(1 − τh) + δτckt(1 − τh) (4)

+
∫ ξ

0
max{(−It − wjtξ − C(It, kt))(1 − τh) +

1
1 + rt

EJt+1(zt+1, kt+1, jt+1), (5)

(−Ic
t − C(Ic

t , k))(1 − τh) +
1

1 + rt
EJt+1(zt+1, kc

t+1, jt+1)}dG(ξ) (6)

3Without this assumption, the firm’s profit maximization would not take into account the house-
hold’s income tax. This contrasts with the household’s saving decision, which is based on the fu-
ture after-income-tax dividend, leading to a distortionary effect of the corporate tax. Analyzing this
distortionary effect is beyond the scope of this paper.
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s.t. kt+1 = (1 − δ)kt + It, It ̸∈ Ω(kt) = [−νkt, νkt] (7)

kc
t+1 = (1 − δ)kt + Ic

t , Ic
t ∈ Ω(kt) (8)

dG(ξ) =
1
ξ

dξ (9)

πt(zt, kt, jt) = max
lt

ztxjtC(Yjt) f (kt, lt, Njt)− wjtlt (10)

C(It, kt) =
µ

2

(
It

kt

)2

kt (11)

B.1 Interest rate and capital market

In the model, there are three competitive markets: the capital market and the re-

gional labor markets. Thus, there are three prices to be determined endogenously.

Define pt := U′(ct) = 1/ct. Then, from the Euler equation of the representative

household,

βEt
U′(ct+1)

U′(ct)
=

1
1 + rB

t
⇐⇒ β

pt+1

pt
=

1
1 + rB

t
=

1
1 + rt

(∵ no arbitrage) (12)

As there is no aggregate uncertainty, the expectation operator for the household

can be lifted. Then, define a modified value function J̃t(z, k, j) = pt Jt(z, k, j). We

will show that the original recursive formulation can be rewritten with respect

to the modified value function, which dispenses with the future price pt+1 in the

formulation. Thus, pt is the only price that needs to be traced.
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The following is the original recursive formulation:

Jt(zt, kt, jt) =max
It,Ic

t

πt(zt, kt, jt)(1 − τc)(1 − τh) + δτckt(1 − τh) (13)

+
∫ ξ

0
max{(−It − wjtξ − C(It, kt))(1 − τh) +

1
1 + rt

EJt+1(zt+1, kt+1, jt+1),

(14)

(−Ic
t − C(Ic

t , k))(1 − τh) +
1

1 + rt
EJt+1(zt+1, kc

t+1, jt+1)}dG(ξ) (15)

We replace 1
1+rt

with β
pt+1

pt
. So we have,

Jt(zt, kt, jt) =max
It,Ic

t

πt(zt, kt, jt)(1 − τc)(1 − τh) + δτckt(1 − τh) (16)

+
∫ ξ

0
max{(−It − wjtξ − C(It, kt))(1 − τh) + β

pt+1

pt
EJt+1(zt+1, kt+1, jt+1),

(17)

(−Ic
t − C(Ic

t , k))(1 − τh) + β
pt+1

pt
EJt+1(zt+1, kc

t+1, jt+1)}dG(ξ) (18)

Then, multiply pt to both sides. It leads to

pt Jt(zt, kt, jt) = max
It,Ic

t

ptπt(zt, kt, jt)(1 − τc)(1 − τh) + ptδτckt(1 − τh) (19)

+
∫ ξ

0
max{(−pt It − ptwjtξ − ptC(It, kt))(1 − τh) + βEpt+1 Jt+1(zt+1, kt+1, jt+1),

(20)

(−Ic
t − C(Ic

t , k))(1 − τh) + βEpt+1 Jt+1(zt+1, kc
t+1, jt+1)}dG(ξ) (21)
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Thus, we have

J̃t(zt, kt, jt) = max
It,Ic

t

ptπt(zt, kt, jt)(1 − τc)(1 − τh) + ptδτckt(1 − τh) (22)

+
∫ ξ

0
max{(−pt It − ptwjtξ − ptC(It, kt))(1 − τh) + βE J̃t+1(zt+1, kt+1, jt+1), (23)

(−Ic
t − C(Ic

t , k))(1 − τh) + βE J̃t+1(zt+1, kc
t+1, jt+1)}dG(ξ) (24)

Therefore, a firm’s inter-temporal decision is perfectly characterized by tracing the

contemporaneous price

pt = U′(ct) = 1/ct.

B.2 Wage and labor market

From the representative household’s intra-temporal optimality condition (with

respect to the labor supply),

ωjηL
1
χ

jt = U′(ct)ωjwjt(1 − τh) for ∀j ∈ {G, B} (25)

Therefore,

ηL
1
χ

jt = ptwjt(1 − τh) =⇒ wjt =
η

pt(1 − τh)
L

1
χ

jt (26)

The optimal labor supply Ljt depends upon wjt, and wjt can be determined only

when the labor supply Ljt is known, leading to a fixed-point problem. Therefore,
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wjt needs to be tracked together with pt for the computation.4

C Estimation details

C.1 Challenges of estimating a general equilibrium model with

the existing SMM

The fundamental objective of the SMM method is to minimize the discrepancy

between the moments generated by the model and those observed empirically.

Let Θ denote the parameters of interest and m̂ denote the vector of M moments

from the data for estimation. Under SMM, the moment conditions to satisfy are

m̂ − m(Θ) = 0, where m(Θ) is the model’s prediction for the moments under

parameter Θ and 0 is a zero vector of length M.

Suppose we estimate parameters of the model in which market clearing condi-

tions need to be satisfied as general equilibrium conditions. Given each candidate

parameter vector, the model is solved with an additional loop that makes sure the

market clearing conditions become zero with numerical precision. This additional

layer regarding general equilibrium conditions is likely to result in prohibitively

high computational costs.

C.2 Implementation of SMM in a Bayesian way

The limited-information Bayesian method, as described in Kim (2002) and later ad-

vocated by Christiano, Trabandt, and Walentin (2010) and Fernández-Villaverde,

Rubio-Ramı́rez, and Schorfheide (2016) among others, can be viewed as the Bayesian

version of the simulated method of moments (SMM). The limited-information Bayesian

method only uses a set of moments from the data for parameter inference.
4If χ → ∞, pt is the only price to be tracked as in Khan and Thomas (2008).
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Let Θ denote the parameters of interest and m̂ denote the vector of M empirical

moments from the data for estimation. The likelihood of m̂ conditional on Θ is

approximately

f (m̂|Θ) = (2π)−
M
2 exp

[
−1

2
(m̂ − m(Θ))′ (m̂ − m(Θ))

]
,

where m(Θ) is the model’s prediction for the moments under parameter Θ.5 Bayes’

theorem tells us that the posterior density f (Θ|m̂) is proportional to the product

of the likelihood f (m̂|Θ) and the prior density p(Θ):

f (Θ|m̂) ∝ f (m̂|Θ)p(Θ),

and we can then apply the standard Markov Chain Monte Carlo (MCMC) tech-

niques to obtain a sequence of random samples from the posterior distribution.

C.3 Implementation of multiple-block Metropolis-Hastings

We use the multiple-block Metropolis Hastings algorithm to estimate the model

parameters as well as finding market clearing prices. Let’s denote the moments to

match (including the market clearing conditions) as y ≡ [m̂, 0]. m̂ is for the mo-

ments constructed from the data and 0 is associated with solving for general equi-

librium. We break the parameter space into two blocks as follows: Θ = (Θ1, Θ2)

where Θ1 is for the price block and Θ2 is for the other model parameter block.

Starting from an initial value Θ0 = (Θ1
0, Θ2

0), the algorithm works as follows:

For iteration j = 1, . . . , M, and for block k = 1, 2.

5Each moment’s discrepancy is assumed to contribute equally. Alternatively, we can use the
consistent estimator for the covariance matrix of m̂ and its inverse as the weighting matrix. This
alternative weighting scheme has little impact on our estimation results.
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• Propose a value Θ̃k for the kth block, conditional on Θk
j−1 for the kth block

and the current value of the other block (Θ−k). Θ−k stands for the remaining

block except for the kth block.6

• Compute the acceptance probability αk = min
{

1, f (Θ̃k|Θ−k,y)
f (Θk

j−1|Θ−k,y)

}
.

Update the kth block as

Θk
j =


Θ̃k w.p. αk

Θk
j−1 w.p. (1 − αk)

For each iteration, we first update the price block conditional on the previous it-

eration’s value for the price block and the remaining model parameter block. Then

we sequentially update the model parameter block conditional on the updated

price block.7

We apply the multiple-block RWMH algorithm to simulate draws from the pos-

terior density f (Θ|m̂) with uniform priors. The posterior distribution is character-

ized by a sequence of 3000 draws. We initialize the chain at the point estimate from

particle swam optimization routine from MATLAB.

C.4 Externally calibrated parameters

Externally calibrated parameters are reported in Table C.2. We set β = 0.96, α =

0.28, and γ = 0.64, following common values in the literature. For the average

6In our application, Θ−1 = Θ2 and Θ−2 = Θ1.
7For the accuracy boost in the price block, we consider an extra step of the typical general equi-

librium routine. To be specific, given Θ1, we can compute the implied level of prices Θ1∗ based
on the market clearing conditions. When Θ1 = Θ1∗, the GE is obtained associated with Θ2. The
extra loop iteratively updates Θ1 based on convex combination with corresponding Θ1∗, while Θ2

is fixed. The convergence is achieved due to the stability of the general equilibrium. However, this
step is optional for the method’s application.
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β discount rate 0.96 φ infrastructure spending 0.09
α capital share 0.28 s time to build 1.00
γ labor share 0.64 χ Frisch elasticity 4.00
τh household income tax rate 0.15 δ private capital depreciation 0.09
τc corporate tax rate 0.27 δN public capital depreciation 0.02
E public employment 0.05 ρz z shock persistence 0.75
ζG Region G’s infra. portion 0.81 σz z shock volatility 0.13
ωG Region G’s labor force share 0.73 ι congestion elasticity 0.01

Table C.2: Externally calibrated parameters

Notes: Each period in the model corresponds to one year in the data.

of household income tax rate, we use 0.15 as in Krueger and Wu (2021) where

they compute the tax rate with the data from Blundell, Pistaferri, and Saporta-

Eksten (2016). For corporate tax rate, we use 0.27 from Gravelle (2014) that is the

effective tax paid after deductions and credits. We use 0.05 for the fraction of public

employment, using the FRED data on the government employees (USGOVT) and

the private employees (USPRIV). We use 0.09 for the infrastructure spending out

of tax revenue. This comes from the fact that the infrastructure spending as share

of GDP is 2.4% and the tax revenue as share of GDP is 27.1%. We assume one

year of time-to-build for the baseline analysis. We set Frisch elasticity to be 4 as

in Ramey (2020). We use 0.09 for the private capital depreciation rate, and 0.02 for

the public capital depreciation rate from the BEA depreciation data. We use the

estimates of the persistence and volatility of the idiosyncratic productivity shocks

in Lee (2025), which applies the methodology of Ackerberg, Caves, and Frazer

(2015) on Compustat data from Standard and Poor’s. The congestion elasticity

parameter is set at the level where the erosion of the steady-state aggregate output

due to the congestion effect is at 3%.8

8We provide a robustness check in Appendix G for different levels of congestion effects ranging
from 1% to 10%. Our main results stay unaffected over the different choices of the congestion
parameter.
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C.5 State grouping

Our model captures state-level variations by defining two regions, P and G, based

on the infrastructure size and geographical proximity, as illustrated in Figure C.1.

The brown areas represent poor-infrastructure regions, primarily in the West, while

the green areas indicate good-infrastructure regions. Note that California, Texas,

and Washington are excluded from the West, as they do not fit the poor-infrastructure

category. Similarly, poor-infrastructure states in the East are also omitted. Addi-

tionally, transitional states—such as Minnesota, Iowa, Missouri, and Louisiana—are

excluded to minimize spillover effects. These excluded states, shown in grey, are

not considered in the calculation of state-level infrastructure and private capital

shares.9

Our classification reassigns Texas and California to the good-infrastructure group,

ensuring a more representative allocation.10 Since their neighboring states exhibit

minimal spillover effects and lack major MSAs near their borders, this grouping

better reflects infrastructure disparities. Table 2 in the main text presents summary

statistics comparing poor- and good-infrastructure regions, with data sourced from

Bennett, Kornfeld, Sichel, and Wasshausen (2020).11

The transition probabilities are set to be persistent (πPP = 0.90, πGG = 0.98).12

The infrastructure portion for group G, ζG, is set at 0.82, and the Poor’s portion ζP

is 0.18.13

9We thank an anonymous referee for suggesting the geographical grouping. In our working
paper, regions were classified using the median ranking of per capita infrastructure capital stock
from 1994 to 2017.

10Further state-level details are in Appendix A.
11Details on the state-level data sources and variable construction are presented in Appendix A.
12Transition probabilities are constructed using the state-level data in Table A.1 in Appendix A.

Specifically, we use the two moments: 1) the transition probability from the Good to Poor region
and 2) the ratio of the number of firms between the two regions. We check the robustness of our
main results over a different specification of the transition probability in Appendix G.

13If we standardize the infrastructure capital stock of the poor and good groups by their respec-
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Figure C.1: Regions with good vs. poor infrastructure

C.6 Targeted moments and sensitivity analysis

Following Cooper and Haltiwanger (2006), we assess the sensitivity of the selected

moment targets to illustrate the usefulness of incorporating the high region’s pri-

vate capital share in inferring λ. Table C.3 reports the moment sensitivity when

the parameter changes by 1%. The number is obtained by the average absolute log

changes for 1% increase and 1% decrease.

Target moment θ λ G x

Private-to-infrastructure capital ratio 1.782 0.564 0.1400 0.165

High region’s private capital k portion 0.044 0.015 0.002 0.012

Government spending to output ratio 5.553 1.659 1.046 0.229

High region’s output y portion 0.022 0.013 0.003 0.001

Table C.3: Selected moment sensitivities in structural parameter variations

The private-to-infrastructure capital ratio is most sensitive to variations in θ,

followed by λ. After accounting for θ, which has a stronger association with the

private-to-infrastructure capital ratio, λ emerges as the second most influential pa-

rameter in disciplining the good-infrastructure region’s share of private capital k.

tive population sizes, we find that ζG = 0.84, which is close to the value of 0.82 used in our analysis.
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Consequently, we suggest that the high region’s private capital k portion serves as

a useful moment for refining our understanding of λ.

C.7 External validation with empirical state-level elasticity

As external validation, we compute the state-level elasticity from our model and

compare it to the empirical estimate using the state-level data. We find that the

state-level input elasticity from our model indicates the complementarity between

private and public capital and this is consistent with the empirical elasticity ob-

tained from the state-level production function estimation.

C.7.1 State-level elasticity from the model

In our model, the infrastructure stock is shared among the firms in the same region.

We conduct the state-level aggregation as follows: we fix the firm-level estimates

except for the elasticity λ and spatial productivity heterogeneity x1.14 We estimate

these two parameters under the state-level production functions.15


x1

(
θk

λ−1
λ

1 + (1 − θ)N
λ−1

λ
1

) λ
λ−1 α

lγ
1(

θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ

2

) λ
λ−1 α

lγ
2

 =

y1

y2

 (27)

where (x1, λ) are unknown, while all the other allocations and parameters,

(y1, y2, k1, k2, N1, N2, l1, l2, θ, α, γ) are obtained from the estimated baseline model.16

14Since the production function in our model is decreasing returns to scale, there is no guarantee
that the firm-level elasticity and productivity is aggregated to have the same value in the state-level.

15We cannot identify the public capital stock share, θ separately from the elasticity, λ in the state-
level model. This is the main reason why we introduce the micro-level heterogeneity in our struc-
tural model. Therefore, in the state-level model, we fix the public capital stock share at the firm-
level estimate.

16The two parameters (x1, λ) are obtained from the exact identification.
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Using the same nonlinear least squares (NLLS) optimization used in An, Kangur,

and Papageorgiou (2019), we get the estimate of the state-level production function

(x1, λ) = (1.766, 0.349).

If we assume a CRS state-level production function with γ = 1 − α, the es-

timates are (x1, λ) = (1.923, 0.482). Therefore, our model suggests that public

capital and private capital are gross complements at the state level.17

It is important to emphasize that we compare the NLLS results derived from

model-simulated data with those from empirical data (as in the following section),

serving as an external validation. Our model validation aligns with the concept of

indirect inference, which involves comparing the conditional correlation obtained

from OLS regression using simulated data with that from empirical data.

C.7.2 State-level elasticity from the data

Using the state-level data, we estimate the elasticity of substitution between pri-

vate and public capital given a CES production technology. We closely follow An,

Kangur, and Papageorgiou (2019) in which the elasticity is estimated using the

nonlinear least squares using the following:

ln
(

Yit
Yi,t−1

)
= c + (1 − a) ln

(
Lit

Li,t−1

)
+

a
ψ

ln
[

bKψ
it + (1 − b)Nψ

it

bKψ
i,t−1 + (1 − b)Nψ

i,t−1

]
+ (ϵit − ϵi,t−1).

i denotes the state, t denotes the time, and ϵ is the error term. Y is the output, K

is the private capital stock, N is the infrastructure capital stock, and L is employ-

ment. ψ is the capital substitution parameter which implies a public-private capital

elasticity of substitution (ES) of 1/(1 − ψ).
Table C.4 shows the estimation results from nonlinear least squares. The elas-

17Among the unreported results, we estimate the Cobb-Douglas production function as in Baxter
and King (1993) using the simulated state-level data. The returns to scale parameter for the public
capital is estimated to be greater than 0, consistent with the increasing returns to scale. The result
is available upon request.
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Estimates 90% confidence interval

a 0.402 [0.351, 0.453]
b 0.070 [0.018, 0.123]

Elasticity of substitution 0.445 [-0.099, 0.989]

Table C.4: Results from nonlinear least squares estimation

Notes: Elasticity of substitution is 1
(1−ψ)

. Its confidence interval is derived by the delta method.

ticity of substitution between public and private capital is estimated to be 0.445.18

In other words, the state-level variations indicate the complementarity between

private and public capital. However, this result does not imply the complemen-

tarity between private and public capital at the firm level. In fact, the private and

public capitals can be gross substitutes at the firm level, whereas they are gross

complements at the state level.

It is worth noting that our model bridges the gap between the firm-level esti-

mates and the state-level estimates. According to our estimates, private capital is a

gross substitute for public capital at the firm level, while it is a gross complement

of public capital at the state level. At the state level, the elasticity of substitution

includes a good public nature of the infrastructure benefiting all firms in a state.

Therefore, the non-rivalry of the infrastructure generates the complementarity be-

tween the state-level private capital and the public capital.

18As robustness check, we apply GMM estimation where Lit−2, Kit−2, Nit−2 are used in exogene-
ity conditions. The elasticity of substitution is estimated to be 0.44. This result is available upon
request.
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D Additional quantitative analysis

D.1 Efficiency vs. Equality: Cross-state analysis

In this section, we analyze the cross-state heterogeneous impact of the infrastruc-

ture investment. In our structural analysis, we divide all the states in the U.S.

into two groups: Poor vs. Good by geographical proximity while controlling for

potential spill-over effects.19

Table D.5: Cross-state inequality in short-run fiscal multipliers

Baseline Partial eq. Equal spending

Total Poor Good Total Poor Good Total Poor Good

Y 1.1494 0.0537 1.0956 1.4142 0.0605 1.3537 0.7489 0.1468 0.6021

Inv. -0.2055 -0.0148 -0.1907 0.1454 0.0087 0.1367 -0.2200 -0.0120 -0.2080

Earnings 2.9970 0.1653 2.8318 3.3815 0.1800 3.2015 1.2877 0.1775 1.1101

C 2.5771 0.0560 2.5212 0.9483 0.0598 0.8885

Table D.5 reports the heterogeneous state-specific fiscal multipliers. Per $1

spending, out of the total output increase of $1.149, $1.096 goes to the output in-

crease in the Good states, while only the incremental of $0.054 belongs to the Poor

states. In contrast, the crowding-out effect of the private investment is signifi-

cantly greater in the Good states, featuring −0.191 out of total crowding-out effect

of −0.206. In terms of the earnings, out of the total increase of $2.997 per $1 fiscal

spending, $0.165 belongs to the Poor states, while $2.832 goes to the Good states.

The aggravation of the cross-state inequality is more severe in the consumption

side, as the infrastructure spending is financed by the lumpy-sum taxation impar-

tially across the states, while the benefit of the spending is relatively more skewed

19The assumptions necessary for the cross-state analysis are specified in Appendix E.
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to the Good states.20

In the baseline model, the general equilibrium effect weakly alleviates the un-

equal distribution of the benefit of the fiscal spending across the states, as can

be seen from the earnings ratio between the two states: the earnings multiplier

ratio is smaller than the counterpart in the partial equilibrium (2.832/0.165 <

3.202/0.180). This is mainly due to the Good state’s substantially more susceptible

investment response to the GE crowding-out effect than the Poor state’s invest-

ment (from 0.137 to -0.191 vs. from 0.009 to -0.015).

Table D.6: Region-specific taxes and short-run fiscal multipliers

Baseline Taxing Good region Taxing Poor region

Total Poor Good Total Poor Good Total Poor Good

Y 1.1494 0.0537 1.0956 1.0036 0.0501 0.9535 1.2994 0.0575 1.2419

Inv. -0.2055 -0.0148 -0.1907 -0.3777 -0.0257 -0.3519 -0.0306 -0.0036 -0.0270

Earnings 2.9970 0.1653 2.8318 0.3009 0.1074 0.1935 5.7270 0.2247 5.5023

C 2.5771 0.0560 2.5212 0.5556 1.0159 -0.4603 4.6214 -0.9030 5.5244

Then, we consider a counterfactual policy experiment where the fiscal shock

is equally spent on the Good and Poor states. The outcome of this experiment

shows a drastic trade-off a government would face between aggregate-level effi-

ciency and cross-state equality. Compared to the status quo policy, equal spend-

ing leads to a substantially lower output multiplier (0.749) and a greater degree

of crowding-out effect. Not surprisingly, the Good states’ fiscal multiplier drops

down significantly (0.602 vs. 1.096). However, the Poor states’ output fiscal multi-

plier is around three times greater than the baseline (0.054 vs. 0.147); the earnings

multiplier is around 8% greater than the baseline (0.165 vs. 0.178). This result is

20The tax is imposed more lightly for the Poor states than the Good states, but the tax burden is
significantly greater than the benefit in the poor states in the baseline model.
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largely due to the estimated state-specific productivity differences across the states.

Also, due to the non-rivalry, the cross-state heterogeneity in the number of firms

(capital) utilizing the additional infrastructure strongly affects the policy outcome.

The next policy experiment is counterfactual tax financing for fiscal spending

shock. The middle and right sections of Table D.6 report the fiscal multipliers when

the shock is purely financed by levying an additional lump-sum tax solely on the

Good and Poor regions, respectively. The key channel of this experiment is the

wealth effect, where reduced consumption affects the regional labor supply and

the wage. With the Good region taxed, the aggregate fiscal multiplier decreases

(from 1.149 to 1.004), while it increases for the other scenario (from 1.149 to 1.299).

These results are crucially driven by the different degrees of crowding-out effects

through consumption channels. The results also show a stark trade-off between ef-

ficiency and inequality across the states driven by different tax schemes. A greater

aggregate-level efficiency is achieved once the tax is levied on the Poor region with

a significantly heightened fiscal multiplier (from 1.149 to 1.2994), while the cross-

state inequality substantially worsens despite positive output gains for both states.

Especially when it comes to consumption, inequality is substantially aggravated

due to the direct tax effect, which supports the boost in aggregate output.

As this paper does not focus on the normative optimal policy, the implication

is limited to a positive evaluation, but the evaluated trade-offs between efficiency

and equality are highly policy-relevant takeaways of this model.

D.2 Fiscal multipliers and corporate taxation

In this section, we compare the fiscal multipliers when the infrastructure spending

is combined with different tax policies. Three different policies are considered.
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The first policy is decreasing the corporate tax rate by 33% from the baseline level

(27%→18%) for the period of shock and the following year (2 years). The second

policy uses the baseline level (27%), and the last policy increases the corporate

tax rate by 33% from the baseline level (27%→36%) for the initial two post-shock

years.21 The remaining balance in the fiscal budget after the change in taxation is

financed by the lump-sum tax. Thus, the third policy collects the least amount of

lump-sum tax among the three policies.22

Table D.7: Fiscal multipliers

Fiscal multipliers Low Tax Baseline High Tax

Output
Short-run 1.2112 1.1494 1.0867
Long-run 2.8731 2.6414 2.4084

Short-run (2 years)
Consumption 2.4789 2.5771 2.6721
Investment -0.1528 -0.2055 -0.2585
Public capital 1.6990 1.7039 1.7088
Labor income 3.0097 2.9970 2.9813

Long-run (5 years)
Consumption 9.2564 8.7296 8.2003
Investment -0.1033 -0.1782 -0.2533
Public capital 4.0988 4.1034 4.1080
Labor income 10.1780 9.4841 8.7883

Table D.7 reports the fiscal multipliers across the three corporate tax policies.

In the first policy with low corporate tax, the short-run multiplier is around 1.211,

which is the greatest among the three. In the last policy with high corporate tax,
21The third policy mimics the Biden administration’s original plan to increase the corporate tax

rate by 33%. As our baseline tax level is 27% while the corporate tax rate of 2022 is 21%, there is a
level difference in the tax rate.

22Our fiscal multiplier analysis is based on the impulse response to the MIT fiscal spending
shock under perfect foresight. Therefore, the representative household becomes indifferent be-
tween lump-sum tax financing and debt financing as long as the lifetime income is unaffected. If
the model considers household heterogeneity under the borrowing limit and frictional financial
market, this indifference collapses, leading to divergent fiscal multipliers between tax financing
and debt financing as in Hagedorn, Manovskii, and Mitman (2019).
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the short-run multiplier is around 1.087, which is the lowest among the three. The

same ranking is observed for the long-run multipliers.

One of the main channels that cause the differences in the fiscal multipliers

is the firm-level investment. When the fiscal spending is combined with the low

corporate tax policy, due to the increased incentive of cumulating the future capital

stock, the private investment significantly less crowds out. A similar pattern is

observed in the long-run fiscal multipliers of private investment.

The differences in the response of private capital investment to the fiscal policy

lead to the differences in the labor income response. The greater the private invest-

ment, the greater the employment effect on the economy. In the low corporate tax

policy, the labor income multiplier is 3.010; in the baseline corporate tax policy, the

labor income multiplier is 2.997; in the high corporate tax policy, the labor income

multiplier is 2.981.

However, the low corporate tax policy is not a free lunch. The low corporate tax

policy leads to the lowest consumption multiplier of 2.479 in the short run. This is

because this tax policy requires the greatest lump-sum tax to finance the spending

shock. This clearly shows what is the trade-offs in corporate tax policies; the low

tax policy sacrifices the short-run welfare to achieve long-run welfare. In the long

run, due to the private investment and labor income channels, the fiscal multiplier

is the greatest for the low corporate tax policy.

D.3 The role of time to build

In this section, we analyze the role of time to build on the fiscal multiplier. On

top of the one-year time to build in the baseline, we assume there is an extra year

of time to build for capital stock to be utilizable after the investment as in Ramey

(2020) (two years, in total). Therefore, the law of motion of the public capital stock

22



is as follows:23

NA,t+2 = NA,t+1(1 − δN ) +Ft −
µ

2

(
Ft

NA,t+1

)2
NA,t+1 (28)

Nj,t+1 = ζ jNA,t+1 for j ∈ {P, G} (29)

Ft =


Fss + ∆G if t = 1

Fss otherwise
(30)

where Fss is the stationary equilibrium level of fiscal spending on infrastructure.

Due to the time lag between the fiscal policy shock and the arrival of the public

capital stock, there exists a news component in the policy, which will be analyzed

further in this section.

Table D.8: Fiscal multipliers across the states under time to build of two years

Fiscal multipliers T2B T2B - PE Baseline Baseline - PE

Output
Short-run 0.6231 1.5191 1.1494 1.4142
Long-run 1.7220 4.0969 2.6414 3.8364

Short-run (2 years)
Consumption 1.6859 2.5771
Investment -0.4230 0.2227 -0.2055 0.1454
Public capital 1.6574 1.6807 1.7039 1.7161
Labor income 1.6867 2.6197 2.9970 3.3815

Long-run (5 years)
Consumption 6.3164 8.7296
Investment -0.4364 0.4508 -0.1782 0.3669
Public capital 4.0568 4.0817 4.1034 4.1170
Labor income 6.5475 8.5200 9.4841 10.5524

For this analysis, the fiscal multiplier is measured by the sum of the present

values over the first three years for the short run and over the six years for the long

23For the consistency in the notation with the previous formulations, we leave the time index of
the future public capital stock to be t + 1 + s where s = 1.
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run after the initial fiscal spending shock.24

Table D.8 reports the fiscal multipliers when there is time to build of two years.

The first column is the general equilibrium multipliers under the two years of the

time to build; the second reports the same one in the partial equilibrium; the third

is the baseline model; and the last is the baseline model in the partial equilibrium.

The output fiscal multiplier decreases in general equilibrium, when the time-to-

build is extended to two years (1.1494→0.6231), consistent with Ramey (2020). On

the other hand, the output fiscal multiplier increases in the time to build in the

partial equilibrium (1.4142→1.5191).

Figure D.2: The impulse responses to the infrastructure spending shock
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To illustrate the role of the extended time to build, Figure D.2 plots the impulse

responses of equilibrium allocations. Due to the extended time to build, the pub-

lic capital spikes one year after the fiscal spending shock. As the fiscal spending

shock hits, consumption immediately drops, as the lump-sum tax immediately

puts downward pressure on the household’s consumption. On the other hand,

the production side does not face any direct change in the infrastructure until one

24Previously, it was 2 years for the short run and 5 years for the long run without the extended
time to build.
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year after the shock, only facing interest increases due to the consumption drop.

Therefore, the private investment significantly decreases before the public capital

becomes available. In the following period (t = 2), the added public capital ar-

rives, so the production increases with private capital substantially shrunk due to

the previous period’s crowding-out effect. The increased output leads to an in-

crease in employment and wages.

The news effect impacts the fiscal multiplier in the partial equilibrium, as it al-

lows the agents with the rational expectation to adjust their allocations optimally

even before the spending shock is capitalized. The news effect is the key chan-

nel boosting the fiscal multipliers in the partial equilibrium. However, this effect

is dominated by changes in the price once we consider the general equilibrium

effect. The agents’ adjustment before the shock capitalization is followed by inter-

est rate adjustment, dampening the fiscal multiplier even in a greater magnitude

than the one-year time-to-build. This is because the interest rate adjustment oc-

curs at one time, and the increased cost of investment in the period before the

spending shock leads to a lowered capital stock. Under real friction, such as the

convex adjustment cost, the lowered capital stock leads to a greater adjustment

cost in the following period when the fiscal spending shock materializes, leading

to a substantially dampened fiscal multiplier. Therefore, this is an outcome of the

interaction between the news effect and the real friction.

D.4 The marginal product of private and infrastructure capital

In this section, we assess the equilibrium level of the marginal product of private

and public capital stock. Table D.9 shows the marginal product of private and in-

frastructure capital stocks for the entire economy (column 1), the Good state (col-
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umn 2), and the Poor state (column 3). In this economy, due to the presence of

the capital adjustment cost at the firm level, the marginal product of capital varies

across the firms.25 We use the average marginal product of capital for the analysis.

Table D.9: The marginal product of private and public capital

Marginal product of capital (MPK) Aggregate Good state Poor state

Private 0.2838 0.3339 0.0444

Infrastructure 0.3654 0.4074 0.1644

The marginal product of public capital stock is substantially higher than the

private counterpart. This shows that the current stock of public capital is less than

the socially desired level.26 Moreover, the public-to-private MPK ratio is more than

twice greater in the Poor state than in the Good state. This shows that the relative

shortage of public capital provision is more severe in the Poor state than in the

Good state in equilibrium. However, this relative shortage is an efficient outcome

in the model, so the normative interpretation is limited.

D.5 Changes in equilibrium allocations due to the fiscal shock

Table D.10 presents changes in various equilibrium allocations resulting from the

fiscal shock. Compared to the stationary equilibrium, there is an average annual

increase of 0.421% in employment and 1.598% in wages. Consequently, this leads

to a $2.997 increase in earnings and $2.577 increase in consumption for every $1

of fiscal spending. In the partial equilibrium scenario without changes in factor

25The convex adjustment cost depends on the capital stock of the firm, which makes the marginal
cost of investment different across the firms. This leads to the heterogeneous marginal product of
capital stock in equilibrium.

26If there were a competitive market for public capital, the price of the public capital would adjust
in the direction to equate the shadow value of private and public capital.
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prices, the increase in labor demand is significantly more pronounced. This results

in a $3.382 surge in earnings.27

Table D.10: Short-run responses of other equilibrium allocations

Baseline Partial eq.

Employment (average annual % change from ss) 0.4210 0.6506

Wage (average annual % change from ss) 1.5983

Earnings (dollars per $1 spending) 2.9970 3.3815

Comsumption (dollars per $1 spending) 2.5771

D.6 Parameter-level uncertainty associated with the fiscal multi-

pliers

we have examined the parameter-level uncertainty associated with the fiscal mul-

tipliers by drawing 50 draws from the estimated posterior distribution.28 In the ta-

ble below, the values in the square brackets represent the 10th and 90th percentiles

of the fiscal multipliers, providing a sense of the range of possible outcomes.

We observe that the output fiscal multiplier in the heterogeneous firm model

remains significantly above 1, whereas in the representative firm model, it falls

below 1. Moreover, the investment response differs significantly between the two

models. In the heterogeneous-firm model, investment exhibits a more muted de-

cline than in the representative-firm counterpart, where the crowding-out effect is

more pronounced. This suggests that firm heterogeneity plays a key role in shap-

ing the transmission of fiscal policy, influencing both output and investment dy-

namics in ways that would not be captured in a representative-agent framework.

27The consumption is fixed at the steady-state level to turn off the inter-temporal bond price
variation.

28Due to computational constraints, we limited the analysis to 50 draws.
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Table D.11: Posterior analysis of fiscal multipliers

Heterogeneous-firm model Representative-firm model

Output 1.1494 0.8906
[1.0530, 1.6984] [0.8840,0.9387]

Investment -0.2055 -0.4371
[-0.2082, -0.1924] [-0.4455,-0.4370]

E Assumptions for the cross-state analysis

In this section, we specify the assumptions to implement the cross-state analysis

using the baseline model. As there is only a representative household in this econ-

omy, the state-level consumption is defined under the following assumptions:

• All the incomes are state-specific, and there is no cross-state transfer.

• Each equity is exclusively owned by the state’s household.

• Bond holding and lump-sum subsidies are attributed to each state propor-

tionately to the exogenous fiscal spending ratio.

Given these assumptions, the state-level consumption can be properly defined

due to the separate budget clearing across the states. One can introduce two house-

holds in the model to capture Poor and Good households separately, but this can

be done only at a high computational cost and the model complication.
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F Notes on the fiscal multiplier analysis

The following laws of motion determine the time path of the public capital stocks

after the fiscal spending shock ∆G at t = 1:

NA,t+1 = NAt(1 − δN ) +Ft −
µ

2

(
Ft

NAt

)2

NAt (31)

Njt = ζ jNAt for j ∈ {G, P} (32)

Ft =


F ss + ∆G if t = 1

F ss otherwise
(33)

where F ss is the stationary equilibrium level of infrastructure spending.

For a simple illustration, we consider a two-period model with the firm-level

investment decision where the production functions are the same as in Proposition

1, and investment is subject to the convex adjustment cost. From the first-order

condition of the investment, the following equation holds:

1 + µ

(
k′

k
− (1 − δ)

)
︸ ︷︷ ︸

Marginal cost

=

GE channel︷ ︸︸ ︷
1

1 + r

Future MPK︷ ︸︸ ︷
z

1
α

(
1 − α

w

) 1−α
α (

θk
′ λ−1

λ + (1 − θ)N
λ−1

λ

) λ
λ−1−1

k
′− 1

λ θ︸ ︷︷ ︸
Marginal benefit = discounted future MPK

(34)

The left-hand side of the equation above is the marginal cost of the firm-level in-

vestment, and the right-hand side is the marginal benefit. To analyze how the

increase in the public capital stock N affects the marginal benefit of firm-level in-
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vestment, we a take a partial derivative with respect to N.

∂

∂N
Marginal benefit =

(
1

1 + r

)
× ∂

∂N
Future MPK +

GE effect︷ ︸︸ ︷
Future MPK × ∂

∂N

(
1

1 + r

)
(35)

∂

∂N
Future MPK =

∂

∂N

(
θk

′ λ−1
λ + (1 − θ)N

λ−1
λ

) 1
λ−1 F(Θ) (36)

=

(
1

λ − 1

)(
λ − 1

λ

)
(1 − θ)N− 1

λ

(
θk

′ λ−1
λ + (1 − θ)N

λ−1
λ

) 2−λ
λ−1 F(Θ)

(37)

=
1
λ
(1 − θ)N− 1

λ

(
θk

′ λ−1
λ + (1 − θ)N

λ−1
λ

) 2−λ
λ−1 F(Θ) > 0 (38)

where F is a function of the parameters, Θ. If the elasticity of substitution λ is

a finite positive number, the marginal benefit of firm-level investment increases

in N through the increased future marginal product of capital, given the general

equilibrium effect is fixed. However, if λ goes to infinity, the marginal benefit of

investment does not depend on N. It is worth noting that the marginal benefit

increases in N regardless of whether the public and private capital stocks are gross

complements (λ < 1) or substitutes (λ > 1).

The elasticity of substitution between private and public capital stock plays

a key role in determining the marginal benefit of firm-level investment given a

fiscal expenditure shock. Analytically, the change in the marginal benefit of firm-

level investment over the elasticity given the fiscal spending shock can be captured

by the cross derivative
[

∂2

∂λ∂N Marginal benefit
]

in the simple two-period model.
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Using Equation (35), we have the following equation:

∂2

∂λ∂N
Marginal benefit =

∂

∂λ


1
λ

︸︷︷︸
Direct

(
1

1+r

)
MPK(

θk′
(N

k′
) 1

λ + (1 − θ)N
)

︸ ︷︷ ︸
Indirect


+

∂

∂λ
GE effect

(39)

As displayed in the equation above, the elasticity of substitution affects the re-

sponse of marginal benefit through two channels: 1) direct and 2) indirect chan-

nels. The direct channel refers to newly added capital being relatively less valu-

able when the public capital stocks are more substitutable with the private capital.

The indirect channel refers to a change in marginal benefit of investment due to

the change in the relative values of the existing public and private capital stocks.

The direct channel predicts the marginal benefit of firm-level investment decreases

in the elasticity, while the sign of the indirect channel cannot be analytically deter-

mined.29

G The representative-agent model: An extension of

Baxter and King (1993)

We consider the following representative-firm problem where the notations are

the same as the baseline model except for ζ, which is the scale parameter for the

infrastructure capital. It is worth noting that we use the same Φ level for the

representative-agent model as in the baseline. This is to preserve the symmetry

29The sign of the effect also depends on the firm-level capital stock.
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in the adjustment costs between the private sector and the public sector.30 Also,

the household and government sides are identical to the baseline model, so we

abstract from the description for the sake of brevity.

J(k; S) = max
k′

(1 − γ)

(
γ

w(S)

) γ
1−γ

A
1

1−γ N
ζ

1−γ k
α

1−γ (1 − τc)(1 − τh) (40)

+ (−k′ + (1 − δ)k)(1 − τh) + τδk(1 − τh) (41)

− µ

2

(
k′

k
− (1 − δ)

)2

k(1 − τh) +
1

1 + r(S)
EJ(k′; S′) (42)

where J is the value of the representative firm; S is the aggregate state that include

the same components as the baseline model’s aggregate state, except for the dis-

tribution of capital Φ replaced by the aggregate capital stock K. The first-order

optimality conditions are as follows:

[k′] :
(

1 + µ

(
k′

k
− (1 − δ)

))
(1 − τh) =

1
1 + r(S)

EJ1(k′; S′) (43)

Also, from the envelope theorem, we have

[k] : J1(k; S) =
α

1 − γ
(1 − γ)

(
γ

w(S)

) γ
1−γ

A
1

1−γ N
ζ

1−γ k
α

1−γ−1(1 − τc)(1 − τh) (44)

+ (1 − δ + τcδ)(1 − τh) +

(
µ

2

(
k′

k

)2

− µ

2
(1 − δ)2

)
(1 − τh). (45)

30If the representative-agent economy’s private capital adjustment cost is differently calibrated,
it necessarily implies less or more efficient adjustment than the infrastructure capital adjustment.
Also, it is not desirable to change the public capital adjustment cost parameter for the sake of a fair
comparison of the fiscal multipliers across the models.
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H Comparison with the fiscal multipliers in the liter-

ature

Ramey (2011) constructs government spending shocks that control for the antici-

pation effects and finds the government spending multipliers ranging from 0.6 to

1.2. Nakamura and Steinsson (2018) use state-level variations in military buildups

(increases in federal purchases associated with military buildups) and find a state

GDP multiplier of 1.4. They show their multiplier is equal to the aggregate multi-

plier in a small open economy with a fixed exchange rate and is larger than the

closed economy aggregate multiplier for normal monetary policy. Chodorow-

Reich (2019) studies the fiscal multiplier using the cross-sectional variations of fis-

cal spending controlling for state-specific heterogeneity. The paper concludes that

the cross-sectional multiplier is around 1.8, and the lower bound for the national

multiplier without the monetary policy response is 1.7. Our quantitative result

shows that the short-run national fiscal multiplier is around 1.41 without the gen-

eral equilibrium effect, comparable but smaller value than Chodorow-Reich (2019).

However, once the general equilibrium effect (the real interest rate) is considered,

the spending multiplier reduces to 1.15, which is within the range of Ramey (2011).

Our focus is on infrastructure spending multipliers, which may have a differ-

ent nature compared to defense or overall government spending, as pointed out

in Leduc and Wilson (2017). The paper empirically analyzes the fiscal multiplier

using the state-level variation in highway spending and structurally analyzes the

national-level multiplier based on the empirical analysis. They provide the impact

multiplier of 1.4 and the cumulative multiplier of 6.6 over 10 years. Our paper dis-

tinguishes itself from Leduc and Wilson (2017) by including a firm-level frictional

adjustment that accurately models micro-level investment responses after the im-
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plementation of fiscal policies (Cooper and Haltiwanger, 2006). We also estimate

the micro-level parameters using the firm and state-level moments.

Fishback and Kachanovskaya (2015) discuss that the possible spillover effects

across the states after fiscal spending hinder the translation of the cross-sectional

multiplier analysis to the national-level multiplier. For this, recent literature has

found a breakthrough by quantifying the spillover effects through the cross-state

network (Peri, Rachedi, and Varotto, 2023). In our paper, we adopt a different ap-

proach to address this issue. We classify states into two groups — Good and Poor

— based on geographical proximity, broadly distinguishing between the East and

West. However, to mitigate potential spillover effects that could bias our analysis,

we exclude neighboring states where infrastructure benefits may extend across re-

gional boundaries. This grouping strategy ensures a representation of regional

differences in infrastructure while minimizing cross-regional externalities.

I Robustness checks

I.1 Robustness over different congestion effects

We conduct the battery of robustness checks for the different levels of the con-

gestion parameter ι. The parameter determines the eroded portion of output due

to the congestion effect, and it affects the transition path of the Good and Poor

regions in the post shock periods. Specifically, we consider the different levels cor-

responding to the steady-state output erosion ranging from 1% to 10%. According

to our fiscal multiplier calculations, the output fiscal multiplier strictly monoton-

ically decreases in the congestion parameter. However the magnitude variation

is negligibly small, marking the fiscal multiplier with the 10% steady-state output
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erosion by congestion at 1.1493, which is only 0.01% decrease from the baseline

multiplier.

I.2 Robustness over a different exogenous spatial transition pro-

cess

In this section, we discuss the robustness check over a different exogenous spatial

transition process. In particular, we consider a counter-factual economy where the

transition probability of a firm at the Good region increases by 1 percent (2% →

3%). In this economy, the portion of firms in the Good region is 0.7611 (0.8270 →

0.7611), which is significantly lower than the empirical estimate. Given this dra-

matic change, the impact on the fiscal multiplier is mild, leading to the level of

1.1018 (1.1494 → 1.1018).

In this exercise, by increasing the shuffling rate between the two areas, well-

capitalized firms in the Good region move to the Poor region more often, leading

to a positive impact in the Poor region and a negative impact on the Good re-

gion. Therefore, firms in the Good region have less incentive to invest, as there

is a greater chance to move to the other area, while the firms in the Poor region

have a greater incentive to invest. Given these two channels, there are counter-

vailing forces for the fiscal multiplier, and it turns out that the increased shuffling

probability slightly negatively affects the fiscal multiplier.
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J Proof of Propositions

Proposition 1. Suppose we are given the micro-level data set (k1, k2, y1, y2, N) s.t.

∃i ∈ {1, 2} s.t. ki < N, N ≤ k1 + k2,
y1

k1
=

y2

k2
. (46)

Suppose the micro-level estimates (z, λ) and the aggregate-level estimate ξ are exactly

identified by fitting the data with the production functions as follows:

f (k1, N; λ, z) = y1 (47)

f (k2, N; λ, 1) = y2. (48)

f (k1 + k2, N; ξ, 1) = y1 + y2 (49)

Then, if the micro-level input elasticity satisfies λ ≥ 1, the aggregate-level input elasticity

satisfies ξ < 1.

Proof.

We prove the proposition separately for production functions of constant (CRS)

and decreasing returns to scale (DRS). We start from the CRS case.31

CRS production function Without loss of generality suppose k1 > k2, z > 1,

and let k2 < N. From the production functions, we have

y1 = z
1
α B(θk

λ−1
λ

1 + (1 − θ)N
λ−1

λ )
λ

λ−1 (50)

y2 = B(θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ )

λ
λ−1 (51)

y1 + y2 = B(θ(k1 + k2)
ξ−1

ξ + (1 − θ)N
ξ−1

ξ )
ξ

ξ−1 (52)

31The proof for the DRS production function is general enough to encompass the CRS case, but
the CRS proof is more intuitive. So, we include both proofs.
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where B :=
(

1−α
w

) 1−α
α . Therefore, the following relationships hold (from the sec-

ond and the third equations above):

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

(53)(
y1 + y2

B(k1 + k2)

) ξ−1
ξ

= θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

. (54)

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ξ ≥ 1. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1. (55)

Hence, y2
Bk2

> 1. From the condition y1
k1

= y2
k2

,

1 <
y2

Bk2
=

y1 + y2

B(k1 + k2)
. (56)

As ξ ≥ 1, we have

1 <

(
y1 + y2

B(k1 + k2)

) ξ−1
ξ

= θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

. (57)

However, N ≤ k1 + k2. Thus,
(

N
k1+k2

) ξ−1
ξ ≤ 1. This leads to

θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

≤ 1, (58)

which is a contradiction. Therefore, if the micro-level input elasticity satisfies

λ ≥ 1, then the aggregate-level input elasticity satisfies ξ < 1.
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DRS production function Without loss of generality suppose k1 > k2, z > 1,

and let k2 < N. From the production functions, we have

y1 = z
1

1−γ B(θk
λ−1

λ
1 + (1 − θ)N

λ−1
λ )

λ
λ−1

α
1−γ (59)

y2 = B(θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ )

λ
λ−1

α
1−γ (60)

y1 + y2 = B(θ(k1 + k2)
ξ−1

ξ + (1 − θ)N
ξ−1

ξ )
ξ

ξ−1
α

1−γ (61)

where B :=
( γ

w
) γ

1−γ . Therefore, the following relationships hold (from the second

and the third equations above):

 y
1−γ

α
2

B
1−γ

α k2


λ−1

λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

(62)

(
(y1 + y2)

1−γ
α

B
1−γ

α (k1 + k2)

) ξ−1
ξ

= θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

. (63)

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ξ ≥ 1. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

 y
1−γ

α
2

B
1−γ

α k2


λ−1

λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1. (64)

Hence, y
1−γ

α
2
Bk2

> 1. From y1
k1

= y2
k2

and k1 > k2,

y
1−γ

α
1

B
1−γ

α k1

=

(
y2
k2

k1

) 1−γ
α

B
1−γ

α k1

=
y

1−γ
α

2

B
1−γ

α k2

k
α+γ−1

α
2 k

1−α−γ
α

1 =
y

1−γ
α

2

B
1−γ

α k2

(
k1

k2

) 1−α−γ
α

︸ ︷︷ ︸
>1

> 1. (65)
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Thus, we deduce that y
1−γ

α
1

B
1−γ

α k1

> 1.

Then, we derive the following inequalities:32

(y1 + y2)
1−γ

α

B
1−γ

α (k1 + k2)
>

y
1−γ

α
1 + y

1−γ
α

2

B
1−γ

α (k1 + k2)
≥ min

 y
1−γ

α
1

B
1−γ

α k1

,
y

1−γ
α

2

B
1−γ

α k2

 > 1. (67)

As ξ ≥ 1, we have

1 <

(
(y1 + y2)

1−γ
α

B
1−γ

α (k1 + k2)

) ξ−1
ξ

= θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

. (68)

However, N ≤ k1 + k2. Thus,
(

N
k1+k2

) ξ−1
ξ ≤ 1. This leads to

θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

≤ 1, (69)

which is a contradiction. Therefore, if the micro-level input elasticity satisfies λ ≥

1, then the aggregate-level input elasticity satisfies ξ < 1. ■

Corollary 2. Suppose we are given the micro-level data set (k1, k2, y1, y2, N) s.t.

∃i ∈ {1, 2} s.t. ki < N, 1 < N ≤ k1 + k2,
y1

k1
=

y2

k2
. (70)

Suppose the micro-level estimates ({zi}n
i=1, λ) and the aggregate-level estimate ζ are ex-

32The first inequality is from the Jensen’s inequality for concave function, as 1−γ
α < 1. The second

inequality is from

a + b
c + d

> min
{

a
c

,
b
d

}
, (66)

which can be proven by the proof by contradiction.
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actly identified by fitting the data with the production functions as follows:

f (k1, N; λ, z) = y1 (71)

f (k2, N; λ, 1) = y2. (72)

h(k1 + k2, N; ζ, 1) = y1 + y2 (73)

Then, if the micro-level input elasticity satisfies λ ≥ 1, the public capital scale parameter

satisfies ζ > 0.

Proof.

We prove the proposition separately for production functions of constant (CRS)

and decreasing returns to scale (DRS). We start from the CRS case.33

CRS production function Without loss of generality suppose k1 > k2, z > 1,

and let k2 < N. From the production functions, we have

y1 = z
1
α B(θk

λ−1
λ

1 + (1 − θ)N
λ−1

λ )
λ

λ−1 (74)

y2 = B(θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ )

λ
λ−1 (75)

y1 + y2 = B(k1 + k2)N
ζ
α (76)

where B :=
(

1−α
w

) 1−α
α . Therefore, the following relationships hold (from the sec-

33The proof for the DRS production function is general enough to encompass the CRS case, but
the CRS proof is more intuitive. So, we include both proofs.
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ond and the third equations above):

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

(77)

y1 + y2

B(k1 + k2)
= N

ζ
α . (78)

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ζ < 0. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1. (79)

Hence, y2
Bk2

> 1. From the condition y1
k1

= y2
k2

,

1 <
y2

Bk2
=

y1 + y2

B(k1 + k2)
. (80)

Thus, we have

1 <
y1 + y2

B(k1 + k2)
= N

ζ
α , (81)

which is a contradiction, as ζ < 0 and N > 1. Therefore, if the micro-level input

elasticity satisfies λ ≥ 1 under the non-rivalry, then the public capital scale param-

eter satisfies ζ > 0 (Baxter and King, 1993).

DRS production function Without loss of generality suppose k1 > k2, z > 1,
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and let k2 < N. From the production functions, we have

y1 = z
1

1−γ B(θk
λ−1

λ
1 + (1 − θ)N

λ−1
λ )

λ
λ−1

α
1−γ (82)

y2 = B(θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ )

λ
λ−1

α
1−γ (83)

y1 + y2 = B(k1 + k2)
α

1−γ N
ζ

1−γ , (84)

where B :=
( γ

w
) γ

1−γ .

Therefore, the following relationships hold (from the second and the third equa-

tions above):

 y
1−γ

α
2

B
1−γ

α k2


λ−1

λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

(85)

(y1 + y2)
1−γ

α

B
1−γ

α (k1 + k2)
= N

ζ
α . (86)

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ζ < 0. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

 y
1−γ

α
2

B
1−γ

α k2


λ−1

λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1. (87)

Hence, y
1−γ

α
2

B
1−γ

α k2

> 1. From y1
k1

= y2
k2

and k1 > k2,

y
1−γ

α
1

B
1−γ

α k1

=

(
y2
k2

k1

) 1−γ
α

B
1−γ

α k1

=
y

1−γ
α

2

B
1−γ

α k2

k
α+γ−1

α
2 k

1−α−γ
α

1 =
y

1−γ
α

2

B
1−γ

α k2

(
k1

k2

) 1−α−γ
α

︸ ︷︷ ︸
>1

> 1. (88)
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Thus, we deduce that y
1−γ

α
1

B
1−γ

α k1

> 1.

Then, we derive the following inequalities:34

(y1 + y2)
1−γ

α

B
1−γ

α (k1 + k2)
>

y
1−γ

α
1 + y

1−γ
α

2

B
1−γ

α (k1 + k2)
≥ min

 y
1−γ

α
1

B
1−γ

α k1

,
y

1−γ
α

2

B
1−γ

α k2

 > 1. (90)

Thus, we have

1 <
(y1 + y2)

1−γ
α

B
1−γ

α (k1 + k2)
= N

ζ
α , (91)

which is a contradiction, as ζ < 0 and N > 1. Therefore, if the micro-level in-

put elasticity satisfies λ ≥ 1 under the non-rivalry, then the public capital scale

parameter satisfies ζ > 0 (Baxter and King, 1993). ■

K A generalized simple theory

K.1 A simple theory with multiple (discrete) firms

Corollary 3. Suppose we are given the micro-level data set
(
{ki, yi}n

1 , N
)

s.t.

∃i ∈ {1, 2, . . . , n} s.t. ki < N, N ≤ ∑
i

ki,
y1

k1
=

y2

k2
= · · · = yn

kn
. (92)

34The first inequality is from the Jensen’s inequality for concave function, as 1−γ
α < 1. The second

inequality is from

a + b
c + d

> min
{

a
c

,
b
d

}
, (89)

which can be proven by the proof by contradiction.
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Suppose the micro-level estimates ({zi}n
i=1, λ) and the aggregate-level estimate ξ are ex-

actly identified by fitting the data with the production functions as follows:

f (ki, N; λ, zi) = yi, for ∀i ∈ {1, 2, . . . , n} (93)

f

(
∑

i
ki, N; ξ, 1

)
= ∑

i
yi (94)

Then, if the micro-level input elasticity satisfies λ ≥ 1, the aggregate-level input elasticity

satisfies ξ < 1.

Proof.

For brevity, we prove the corollary for the CRS production case. However, the ex-

tension to the DRS production function is identical to the one for Proposition 1.35

Without loss of generality suppose ki > k2 for ∀i, z2 = 1 and let k2 < N. From

the production functions, we have

y2 = B(θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ )

λ
λ−1 (95)

∑
i

yi = B

θ

(
∑

i
ki

) ξ−1
ξ

+ (1 − θ)N
ξ−1

ξ


ξ

ξ−1

(96)

where B :=
(

1−α
w

) 1−α
α . Therefore, the following relationships hold (from the sec-

35The proofs for the DRS production function is available upon request.
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ond and the third equations above):

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

(97)(
∑i yi

B ∑i ki

) ξ−1
ξ

= θ + (1 − θ)

(
N

∑i ki

) ξ−1
ξ

. (98)

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ξ ≥ 1. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1. (99)

Hence, y2
Bk2

> 1. From the condition y1
k1

= y2
k2

= · · · = yn
kn

,

1 <
y2

Bk2
=

∑i yi

B ∑i ki
. (100)

As ξ ≥ 1, we have

1 <

(
∑i yi

B ∑i ki

) ξ−1
ξ

= θ + (1 − θ)

(
N

∑i ki

) ξ−1
ξ

. (101)

However, N ≤ ∑i ki. Thus,
(

N
∑i ki

) ξ−1
ξ ≤ 1. This leads to

θ + (1 − θ)

(
N

∑i ki

) ξ−1
ξ

≤ 1, (102)

which is a contradiction. Therefore, if the micro-level input elasticity satisfies λ ≥

1, then the aggregate-level input elasticity satisfies ξ < 1. ■

45



Corollary 4. Suppose we are given the micro-level data set
(
{ki, yi}n

1 , N
)

s.t.

∃i ∈ {1, 2, . . . , n} s.t. ki < N, 1 < N ≤ ∑
i

ki,
y1

k1
=

y2

k2
= · · · = yn

kn
. (103)

Suppose the micro-level estimates ({zi}n
i=1, λ) and the aggregate-level estimate ξ are ex-

actly identified by fitting the data with the production functions as follows:

f (ki, N; λ, zi) = yi, for ∀i ∈ {1, 2, . . . , n} (104)

f

(
∑

i
ki, N; ξ, 1

)
= ∑

i
yi (105)

Then, if the micro-level input elasticity satisfies λ ≥ 1, the public capital scale parameter

satisfies ζ > 0.

Proof.

For brevity, we prove the corollary for the CRS production case. However, the ex-

tension to the DRS production function is identical to the one for Proposition 2.36

Without loss of generality suppose ki > k2 for ∀i, z2 = 1 and let k2 < N. From

the production functions, we have

y2 = B(θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ )

λ
λ−1 (106)

∑
i

yi = B

θ

(
∑

i
ki

) ξ−1
ξ

+ (1 − θ)N
ξ−1

ξ


ξ

ξ−1

(107)

where B :=
(

1−α
w

) 1−α
α . Therefore, the following relationships hold (from the sec-

36The proofs for the DRS production function is available upon request.
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ond and the third equations above):

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

(108)

∑i yi

B ∑i ki
= N

ζ
α . (109)

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ζ < 0. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1. (110)

Hence, y2
Bk2

> 1. From the condition y1
k1

= y2
k2

= · · · = yn
kn

,

1 <
y2

Bk2
=

∑i yi

B ∑i ki
. (111)

Thus, we have

1 <
∑i yi

B ∑i ki
= N

ζ
α , (112)

which is a contradiction, as ζ < 0 and N > 1. Therefore, if the micro-level in-

put elasticity satisfies λ ≥ 1 under the non-rivalry, then the public capital scale

parameter satisfies ζ > 0 (Baxter and King, 1993). ■

K.2 A simple theory with the continuum of firms

Corollary 5. Suppose we are given the micro-level data set (k j, yj, N), j ∈ [0, 1] s.t.

∃i ∈ [0, 1] s.t. ki < N, N ≤
∫ 1

0
k jdj,

yj

k j
= C ∈ R. (113)
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where C is a constant. Suppose the micro-level estimates (zj, λ) and the aggregate-level

estimate ξ are exactly identified by fitting the data with the production functions as follows:

(Normalizer) z0 = 1 (114)

f (k j, N; λ, zj) = yj (115)

f
(∫

k jdj, N; ξ, 1
)
=
∫ 1

0
yjdj (116)

Then, if the micro-level input elasticity satisfies λ ≥ 1, the aggregate-level input elasticity

satisfies ξ < 1.

Proof.

For brevity, we prove the corollary for the CRS production case. However, the ex-

tension to the DRS production function is identical to the one for Proposition 1.37

Without loss of generality suppose k0 < N. From the production functions, we

have

y0 = B(θk
λ−1

λ
0 + (1 − θ)N

λ−1
λ )

λ
λ−1 (117)

∫ 1

0
yjdj = B

θ

(∫
k jdj

) ξ−1
ξ

+ (1 − θ)N
ξ−1

ξ


ξ

ξ−1

(118)

where B :=
(

1−α
w

) 1−α
α . Therefore, the following relationships hold (from the sec-

37The proofs for the DRS production function is available upon request.
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ond and the third equations above):

(
y0

Bk0

) λ−1
λ

= θ + (1 − θ)

(
N
k0

) λ−1
λ

(119) ∫ 1
0 yjdj

B
(∫ 1

0 k jdj
)


ξ−1
ξ

= θ + (1 − θ)

(
N∫ 1

0 k jdj

) ξ−1
ξ

. (120)

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ξ ≥ 1. As N > k0,
(

N
k0

) λ−1
λ

> 1. Thus,

(
y0

Bk0

) λ−1
λ

= θ + (1 − θ)

(
N
k0

) λ−1
λ

> 1. (121)

Hence, y0
Bk0

> 1. From the condition
yj
kj
= C,

1 <
y2

Bk2
=

∫ 1
0 yjdj

B
∫ 1

0 k jdj
. (122)

As ξ ≥ 1, we have

1 <

 ∫ 1
0 yjdj

B
(∫ 1

0 k jdj
)


ξ−1
ξ

= θ + (1 − θ)

(
N∫
k jdj

) ξ−1
ξ

. (123)

However, N ≤
∫

k jdj. Thus,
(

N∫
kjdj

) ξ−1
ξ

≤ 1. This leads to

θ + (1 − θ)

(
N∫
k jdj

) ξ−1
ξ

≤ 1, (124)

which is a contradiction. Therefore, if the micro-level input elasticity satisfies λ ≥
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1, then the aggregate-level input elasticity satisfies ξ < 1. ■

Corollary 6. Suppose we are given the micro-level data set (k j, yj, N), j ∈ [0, 1] s.t.

∃i ∈ [0, 1] s.t. ki < N, 1 < N ≤
∫ 1

0
k jdj,

yj

k j
= C ∈ R. (125)

where C is a constant. Suppose the micro-level estimates (zj, λ) and the aggregate-level

estimate η are exactly identified by fitting the data with the production functions as follows:

(Normalizer) z0 = 1 (126)

f (k j, N; λ, zj) = yj (127)

h
(∫

k jdj, N; η, 1
)
=
∫ 1

0
yjdj (128)

Then, if the micro-level input elasticity satisfies λ ≥ 1, the public capital scale parameter

satisfies η > 0.

Proof.

For brevity, we prove the corollary for the CRS production case. However, the ex-

tension to the DRS production function is identical to the one for Proposition 2.38

Without loss of generality suppose k0 < N. From the production functions, we

have

y0 = B(θk
λ−1

λ
0 + (1 − θ)N

λ−1
λ )

λ
λ−1 (129)∫

yjdj = B
(∫

k jdj
)

N
η
α (130)

where B :=
(

1−α
w

) 1−α
α . Therefore, the following relationships hold (from the sec-

38The proofs for the DRS production function is available upon request.
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ond and the third equations above):

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

(131)∫
yjdj

B
∫

k jdj
= N

η
α . (132)

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume η < 0. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1. (133)

Hence, y2
Bk2

> 1. From the condition y1
k1

= y2
k2

,

1 <
y2

Bk2
=

∫
yjdj

B
∫

k jdj
. (134)

Thus, we have

1 <

∫
yjdj

B
∫

k jdj
= N

η
α , (135)

which is a contradiction, as η < 0 and N > 1. Therefore, if the micro-level in-

put elasticity satisfies λ ≥ 1 under the non-rivalry, then the public capital scale

parameter satisfies η > 0 (Baxter and King, 1993). ■
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K.3 A simple theory with congestion effect

Consider a CES production function F(K, N, L; λ, z) with constant returns to scale

(CRS):

F(k, N, l; λ, z, Y) = zG(Y)(θk
λ−1

λ + (1 − θ)N
λ−1

λ )
λ

λ−1 αl1−α. (136)

where G(Y) = (Y/Y)ψ captures the congestion effect. Then the production func-

tion with the implicit labor demand is as follows:

f (k, N; λ, z, Y) = z
1
α (Y/Y)

ψ
α

(
1 − α

w

) 1−α
α

(θk
λ−1

λ + (1 − θ)N
λ−1

λ )
λ

λ−1 α. (137)

Corollary 7. Under the congestion effect represented by G = G(Y) and constant returns

to scale production function f , the effective aggregate production function h = h(K, N; λ)

that satisfies the following equation features decreasing returns to scale with respect to K.

Y = f (K, N; λ, 1, Y) = h(K, N; λ) (138)

Proof.

Y = f (K, N; λ, 1, Y) (139)

= (Y/Y)
ψ
α

(
1 − α

w

) 1−α
α

(θK
λ−1

λ + (1 − θ)N
λ−1

λ )
λ

λ−1 α. (140)
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Then, by rearranging the terms with respect to Y,

Y = h(K, N; λ) (141)

=

(
Y

ψ
α

(
1 − α

w

) 1−α
α

(θK
λ−1

λ + (1 − θ)N
λ−1

λ )
λ

λ−1 α

) α
α+ψ

. (142)

As α
α+ψ ∈ (0, 1), h is a decreasing-returns-to-scale production function. ■

Corollary 8. Suppose we are given the micro-level data set (k1, k2, y1, y2, N) s.t.

∃i ∈ {1, 2} s.t. ki < N, 1 < N ≤ k1 + k2,
y1

k1
=

y2

k2
. (143)

Suppose the micro-level estimates (z, λ) and the aggregate-level estimate ξ are exactly

identified by fitting the data with the production functions as follows:

f (k1, N; λ, z, Y) = y1 (144)

f (k2, N; λ, 1, Y) = y2. (145)

h(k1 + k2, N; ξ, 1) = Y = y1 + y2 (146)

Then, if the micro-level input elasticity satisfies λ ≥ 1, the aggregate-level input elasticity

satisfies ξ < 1.

Proof.

For brevity, we prove the corollary for the CRS production case. However, the ex-

tension to the DRS production function is identical to the one for Proposition 1.39

Without loss of generality suppose k1 > k2, z > 1, and let k2 < N. From the

39The proofs for the DRS production function is available upon request.
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production functions, we have

y1 = z
1
α B(θk

λ−1
λ

1 + (1 − θ)N
λ−1

λ )
λ

λ−1 (147)

y2 = B(θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ )

λ
λ−1 (148)

y1 + y2 =

(
B̃(θ(k1 + k2)

ξ−1
ξ + (1 − θ)N

ξ−1
ξ )

ξ
ξ−1

) α
α+ψ

(149)

where B := (Y/Y)
ψ
α

(
1−α

w

) 1−α
α and B̃ := Y

ψ
α

(
1−α

w

) 1−α
α . Therefore, the following

relationships hold (from the second and the third equations above):

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

(150)(
y1 + y2

B̃
α

α+ψ (k1 + k2)
α

α+ψ

) ξ−1
ξ

α+ψ
α

= θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

. (151)

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ξ ≥ 1. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1. (152)

Hence, y2
Bk2

> 1.

Then, from the condition y1
k1

= y2
k2

,

1 <
y2

Bk2
=

y1 + y2

B(k1 + k2)
=

Y
α+ψ

α

B̃(k1 + k2)
=

(
y1 + y2

B̃
α

α+ψ (k1 + k2)
α

α+ψ

) α+ψ
α

. (153)
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As ξ ≥ 1, we have

1 <

(
y1 + y2

B̃
α

α+ψ (k1 + k2)
α

α+ψ

) ξ−1
ξ

α+ψ
α

= θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

. (154)

However, N ≤ k1 + k2. Thus,
(

N
k1+k2

) ξ−1
ξ ≤ 1. This leads to

θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

≤ 1, (155)

which is a contradiction. Therefore, if the micro-level input elasticity satisfies λ ≥

1, then the aggregate-level input elasticity satisfies ξ < 1. ■

Then, we show that Proposition 2 holds under a production function with a

congestion effect. Consider a Cobb-Douglas production function F(K, N, L; λ, z)

with constant returns to scale (CRS):

H(k, N, L; ζ, z, Y) = zG(Y)kαL1−αNζ (156)

where G(Y) = (Y/Y)ψ captures the congestion effect. Then the production func-

tion with the implicit labor demand is as follows:

h(k, N; ζ, z, Y) = z
1
α

(
Y
Y

) ψ
α (1 − α

w

) 1−α
α

kN
ζ
α (157)

The aggregate production is as follows:

Y = z
1
α

(
Y
Y

) ψ
α (1 − α

w

) 1−α
α

KN
ζ
α (158)
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Then, the effective aggregate production after the congestion is as follows:

Y = g(K, N; ζ, z) (159)

=

(
z

1
α Y

ψ
α

(
1 − α

w

) 1−α
α

KN
ζ
α

) α
α+ψ

(160)

which is a decreasing-returns-to-scale production function as predicted by Corol-

lary 1. The following proposition shows that the original proposition holds even

after accounting for the congestion effect.

Corollary 9. Suppose we are given the micro-level data set (k1, k2, y1, y2, N) s.t.

∃i ∈ {1, 2} s.t. ki < N, 1 < N ≤ k1 + k2,
y1

k1
=

y2

k2
. (161)

Suppose the micro-level estimates (z, λ) and the aggregate-level estimate ζ are exactly

identified by fitting the data with the production functions as follows:

f (k1, N; λ, z, Y) = y1 (162)

f (k2, N; λ, 1, Y) = y2. (163)

g(k1 + k2, N; ζ, 1) = y1 + y2 (164)

Then, if the micro-level input elasticity satisfies λ ≥ 1, the public capital scale parameter

satisfies ζ > 0.

Proof.

For brevity, we prove the corollary for the CRS production case. However, the ex-

tension to the DRS production function is identical to the one for Proposition 2.40

40The proofs for the DRS production function is available upon request.
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Without loss of generality suppose k1 > k2, z > 1, and let k2 < N. From the

production functions, we have

y1 = z
1
α B(θk

λ−1
λ

1 + (1 − θ)N
λ−1

λ )
λ

λ−1 (165)

y2 = B(θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ )

λ
λ−1 (166)

y1 + y2 =
(

B̃(k1 + k2)N
ζ
α

) α
α+ψ

(167)

where B := (Y/Y)
ψ
α

(
1−α

w

) 1−α
α and B̃ := Y

ψ
α

(
1−α

w

) 1−α
α .

Therefore, the following relationships hold (from the second and the third equa-

tions above):

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

(168)

(y1 + y2)
α+ψ

α

B̃(k1 + k2)
= N

ζ
α . (169)

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ζ < 0. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1. (170)

Hence, y2
Bk2

> 1. From the condition y1
k1

= y2
k2

,

1 <
y2

Bk2
=

y1 + y2

B(k1 + k2)
=

(y1 + y2)
α+ψ

α

B̃(k1 + k2)
. (171)
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Thus, we have

1 <
(y1 + y2)

α+ψ
α

B̃(k1 + k2)
= N

ζ
α , (172)

which is a contradiction, as ζ < 0 and N > 1. Therefore, if the micro-level in-

put elasticity satisfies λ ≥ 1 under the non-rivalry, then the public capital scale

parameter satisfies ζ > 0 (Baxter and King, 1993). ■

K.4 Relaxing the assumption on the firm-level output-to-capital

ratio

The proofs of propositions takes the following step, to which the assumption of

y1/k1 = y2/k2 is applied:

1 <
y2

Bk2
=

y1 + y2

B(k1 + k2)
. (173)

However, as long as y1+y2
B(k1+k2)

> 1 is guaranteed, y1
k1

= y2
k2

is not necessary. In this

section, we drive the boundary of y1/k1 that assures the desired inequality.

Define m := y1
k1

. Suppose y2
Bk2

= 1 + χ where χ > 0. We want to show that there

exists m > 0 such that if m = m, y1+y2
B(k1+k2)

= 1. Then, as long as y1
k1

= m > m, the

desired inequality holds: y1+y2
B(k1+k2)

> 1 even if y1
k1

̸= y2
k2

.

Using y1 = mk1 and y2 = Bk2(1 + χ),

y1 + y2

B(k1 + k2)

∣∣∣∣
m=m

=
mk1 + Bk2(1 + χ)

B(k1 + k2)
= 1 (174)
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Rearranging the terms, we obtain

m = B
(

1 − χ
k2

k1

)
.

As long as y1
k1

> B
(

1 − χ k2
k1

)
, the desired inequality holds. It is worth noting that

when y2
Bk2

is further away from 1 (χ is greater), the m becomes smaller, meaning

the boundary becomes more lenient. In our setup, m = B
(

1 − χ k2
k1

)
< 1 for any

choices of k2
k1

> 0, as B < 1. Specifically,

m ∈ [0, B), where B ≊ 0.15.

In our calibrated baseline model, B ≊ 0.15. Suppose y2
k2

≊ 0.47, which is from a

standard neoclassical model’s level (Y
K = r+δ

α ). From this, we obtain χ ≊ 2.1. Then,

regardless of k2
k1

, as long as y1
k1

> 0.15 ≊ B, the desired inequality holds.

For a more concrete example, suppose k2 = 1.00, k1 = 6.00, and y2 = 2.80, thus
y2
k2

= 0.47. Then, χ ≈ 2.1. Therefore, m ≈ 0.10. As long as y1
k1

> 0.10, y1+y2
B(k1+k2)

> 1

holds.
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