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A State-level data on infrastructure

Table A.1 summarizes the state-level data that is based on the highway infrastruc-

ture investment data from Bennett, Kornfeld, Sichel, and Wasshausen (2020).

State Avg. Rank (Infra.) # Good Group Portion (Infra.) Portion (GDP) Avg. Rank (Estab.) Portion (Estab.)

New York 1.708 24.000 0.072 0.081 2.439 0.072
California 1.833 24.000 0.071 0.133 1.000 0.114
Texas 2.458 24.000 0.071 0.079 2.659 0.069
Florida 4.000 24.000 0.064 0.050 4.000 0.060
Illinois 5.000 24.000 0.049 0.046 5.341 0.044
Ohio 6.542 24.000 0.035 0.036 7.000 0.039
New Jersey 7.125 24.000 0.034 0.034 8.415 0.033
Georgia 8.458 24.000 0.032 0.029 11.171 0.027
Pennsylvania 8.708 24.000 0.032 0.040 5.561 0.044
Massachusetts 9.708 24.000 0.030 0.027 12.341 0.024
Minnesota 10.458 24.000 0.029 0.018 18.561 0.019
North Carolina 12.208 24.000 0.025 0.027 9.976 0.028
Wisconsin 13.083 24.000 0.025 0.017 17.439 0.020
Washington 14.250 24.000 0.024 0.024 14.561 0.022
Virginia 14.458 24.000 0.024 0.027 12.585 0.025
Michigan 16.083 24.000 0.022 0.030 9.024 0.032
Tennessee 16.917 24.000 0.021 0.018 19.195 0.019
Missouri 18.167 24.000 0.019 0.018 15.171 0.021
Indiana 18.833 24.000 0.018 0.019 15.171 0.021
Kentucky 20.292 24.000 0.018 0.011 27.415 0.013
Louisiana 21.333 24.000 0.017 0.014 22.805 0.015
Iowa 21.625 24.000 0.017 0.010 28.951 0.012
Arizona 22.875 24.000 0.016 0.017 23.756 0.016
Colorado 25.625 15.000 0.015 0.017 19.439 0.018
Kansas 25.833 13.000 0.014 0.009 30.829 0.011
Alabama 26.000 23.000 0.015 0.012 24.951 0.014
Maryland 26.042 11.000 0.015 0.020 20.415 0.018
Connecticut 26.542 10.000 0.014 0.016 25.951 0.014
Oklahoma 29.458 0.000 0.012 0.010 27.634 0.013
Mississippi 30.208 0.000 0.011 0.006 33.317 0.009
Oregon 30.500 0.000 0.011 0.011 25.659 0.014
South Carolina 31.917 0.000 0.011 0.011 26.634 0.013
Nevada 33.083 0.000 0.010 0.008 38.000 0.006
Nebraska 34.417 0.000 0.010 0.006 34.927 0.007
Arkansas 34.708 0.000 0.010 0.007 32.439 0.009
New Mexico 35.542 0.000 0.010 0.006 37.000 0.006
West Virginia 37.000 0.000 0.009 0.004 37.244 0.006
Utah 38.375 0.000 0.008 0.007 34.122 0.008
Alaska 39.167 0.000 0.007 0.003 51.000 0.002
Hawaii 39.458 0.000 0.007 0.005 41.854 0.005
Idaho 41.667 0.000 0.006 0.004 40.512 0.005
Montana 41.958 0.000 0.006 0.002 42.512 0.004
Delaware 42.375 0.000 0.006 0.004 47.317 0.003
Wyoming 44.167 0.000 0.005 0.002 49.707 0.003
South Dakota 45.042 0.000 0.005 0.002 45.073 0.003
Rhode Island 46.083 0.000 0.004 0.003 42.963 0.004
Maine 47.208 0.000 0.004 0.004 39.098 0.005
North Dakota 47.500 0.000 0.004 0.002 47.146 0.003
New Hampshire 49.000 0.000 0.003 0.004 39.963 0.005
District of Columbia 50.000 0.000 0.002 0.007 47.927 0.003
Vermont 51.000 0.000 0.002 0.002 47.829 0.003

Table A.1: State-level summary

Notes: Avg. Rank (Infra.) is the average time-series ranking of infrastructure (this variable is the
sorting variable). # Good Group is how many times the state belonged to the good infrastructure
group (Max:24). Portion (Infra.) is the portion of infrastructure on average. Avg. Rank (Estab.) is
the average time-series ranking of the number of establishments. Portion (Estab.) is the portion of
establishments on average.
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B Estimation details

B.1 Implementation of SMM in a Bayesian way

The limited-information Bayesian method, as described in Kim (2002) and later ad-

vocated by Christiano, Trabandt, and Walentin (2010) and Fernández-Villaverde,

Rubio-Ramı́rez, and Schorfheide (2016) among others, can be viewed as the Bayesian

version of the simulated method of moments (SMM). The limited-information Bayesian

method only uses a set of moments from the data for parameter inference.

Let Θ denote the parameters of interest and m̂ denote the vector of M empirical

moments from the data for estimation. The likelihood of m̂ conditional on Θ is

approximately

f (m̂|Θ) = (2π)−
M
2 |S|− 1

2 exp
[
−1

2
(m̂ − m(Θ))′ S−1 (m̂ − m(Θ))

]
,

where m(Θ) is the model’s prediction for the moments under parameter Θ, and S

is the covariance matrix of m̂. The covariance matrix S is often unknown but can be

replaced by a consistent estimator of it, which can be obtained through bootstrap.

Bayes’ theorem tells us that the posterior density f (Θ|m̂) is proportional to the

product of the likelihood f (m̂|Θ) and the prior density p(Θ):

f (Θ|m̂) ∝ f (m̂|Θ)p(Θ),

and we can then apply the standard Markov Chain Monte Carlo (MCMC) tech-

niques to obtain a sequence of random samples from the posterior distribution.
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B.2 Implementation of multiple-block Metropolis-Hastings

We use the multiple-block Metropolis Hastings algorithm to estimate the model

parameters as well as finding market clearing prices. Let’s denote the moments to

match (including the market clearing conditions) as y ≡ [m̂, 0]. m̂ is for the mo-

ments constructed from the data and 0 is associated with solving for general equi-

librium. We break the parameter space into two blocks as follows: Θ = (Θ1, Θ2)

where Θ1 is for the price block and Θ2 is for the other model parameter block.

Starting from an initial value Θ0 = (Θ1
0, Θ2

0), the algorithm works as follows:

For iteration j = 1, . . . , M, and for block k = 1, 2.

• Propose a value Θ̃k for the kth block, conditional on Θk
j−1 for the kth block

and the current value of the other block (Θ−k). Θ−k stands for the remaining

block except for the kth block.1

• Compute the acceptance probability αk = min
{

1, f (Θ̃k|Θ−k,y)
f (Θk

j−1|Θ−k,y)

}
.

Update the kth block as

Θk
j =


Θ̃k w.p. αk

Θk
j−1 w.p. (1 − αk)

For each iteration, we first update the price block conditional on the previous it-

eration’s value for the price block and the remaining model parameter block. Then

we sequentially update the model parameter block conditional on the updated

price block.

We apply the multiple-block RWMH algorithm to simulate draws from the pos-

terior density f (Θ|m̂) with uniform priors. The posterior distribution is character-

1In our application, Θ−1 = Θ2 and Θ−2 = Θ1.
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ized by a sequence of 2000 draws after a burn-in of 2000 draws. We initialize the

chain at the point estimate from particle swam optimization routine from MAT-

LAB.

C Notes on the market clearing conditions

In the model, there are two centralized markets: the capital market and the labor

market. Thus, there are two prices to be determined endogenously.

C.1 Interest rate and capital market

Define p := U′(c(S)). Then, from the Euler equation of the representative house-

hold,

βE
U′(c(S ′))

U′(c(S)) =
1

1 + rB(S) ⇐⇒ β
p(S ′)

p(S) =
1

1 + rB(S)

As there is no aggregate uncertainty, the expectation operator can be ignored.

Then, define a modified value function J̃(z, k, j;S) = p(S)J(z, k, j;S).

In the following original recursive formulation,

J(z, k, j;S) =max
I,Ic

π(z, k, j;S)(1 − τc)(1 − τh)

+
∫ ξ

0
max{−I − ξw(S)− C(I, k)

+
1

1 + r(S)EJ(z′, k′, j′;S ′),

− Ic − C(Ic, k) +
1

1 + r(S)EJ(z′, kc;S ′)}dG(ξ)
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replace 1
1+r(S) with β

p(S ′)
p(S) . So we have,

J(z, k, j;S) =max
I,Ic

π(z, k, j;S)(1 − τc)(1 − τh)

+
∫ ξ

0
max{−I − ξw(S)− C(I, k)

+ β
p(S′)

p(S)EJ(z′, k′, j′;S ′),

− Ic − C(Ic, k) + β
p(S′)

p(S)EJ(z′, kc;S ′)}dG(ξ)

Then, multiply p(S) to both sides. It leads to

p(S)J(z, k, j;S) = max
I,Ic

p(S)π(z, k, j;S)(1 − τc)(1 − τh)

+
∫ ξ

0
max{ − p(S)I − p(S)w(S)ξ

− p(S)C(I, k)

+ βp(S ′)J(z′, k′, j′;S ′),

− p(S)Ic − p(S)C(Ic, k)

+ βp(S ′)J(z′, kc;S ′)}dG(ξ)
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Thus, we have

J̃(z, k, j;S) = max
I,Ic

p(S)π(z, k, j;S)(1 − τc)(1 − τh)

+
∫ ξ

0
max{ − p(S)I − p(S)w(S)ξ

− p(S)C(I, k)

+ β J̃(z′, k′, j′;S ′),

− p(S)Ic − p(S)C(Ic, k)

+ β J̃(z′, kc;S ′)}dG(ξ)

Therefore, a firm’s problem is perfectly characterized by the price

p(S) = U′(c(S)) = 1/c(S).

C.2 Wage and labor market

From the representative household’s intra-temporal optimality condition (with

respect to the labor supply),

ηL
1
χ = U′(c(S))w(S)(1 − τh)

Therefore,

ηL
1
χ = p(S)w(S)(1 − τh) =⇒ w(S) = η

p(S)(1 − τh)
L

1
χ

The optimal labor supply L depends upon w, and w can be determined only when

the labor supply L is known, leading to a fixed-point problem. Therefore, w needs
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to be tracked together with p for the computation.2

D Equilibrium

In the stationary recursive competitive equilibrium, the interest rate and the wage

are determined in the competitive market. Specifically, the following market clear-

ing conditions determine each price.3

[Capital]
∫

EJ(z′, k′(z, k);S)dΦ︸ ︷︷ ︸
Capital demand

= a′(a;S)︸ ︷︷ ︸
Capital supply

[Labor]
∫ (

n(z, k, j;S) +
(

min{ξ∗, ξ}2

2ξ

))
dΦ︸ ︷︷ ︸

Private labor demand

= L(a;S)︸ ︷︷ ︸
Labor Supply in the private market

The aggregate dividend is a sum of individual after-corporate-tax operating profits

net of investment, and the ex-dividend portfolio value P(S) is a sum of all the

firms’ values after the dividend payout:

[Aggregate Dividend] D(S) =
∫ (

π(z, k, j;S)(1 − τc)

− I∗(z, k, j;S)− C(I∗(z, k, j;S), k)− I{I∗ ̸∈ Ω(k)}w(S)ξ
)

dΦ

[Ex-dividend Portfolio Value] P(S) =
∫

J(z, k, j;S)dΦ − D(S)

And the government budget constraint and the spending constraint clear:

2If χ → ∞, p is the only price to be tracked as in Khan and Thomas (2008).
3On the private labor demand side, overhead labor demand is computed by multiplication

of the probability of implementing lumpy investment min{ξ∗ ,ξ}
ξ

and the conditional expectation
min{ξ∗ ,ξ}

2 , where ξ∗ = ξ∗(z, k, j;S) is the threshold rule for making lumpy investments, as in Khan
and Thomas (2008).
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[Government Budget] G(S) = τh(w(S)L(a;S) + D(S))

+
∫

τc(π(z, k, j;S)− δk)dΦ +
B′

1 + rB(S) − B

[Infrastructure Investment] F (S) = φ(G(S)− w(S)E)

[Lump-sum Subsidy] T (S) = (1 − φ)(G(S)− w(S)E)

From the law of motion of the infrastructure, the stationary infrastructure stock is

obtained.4

[Infrastructure] NA =
1 +

√
1 − 2µδN
2δN

F (S), Nj = ζ jNA for j ∈ {P, G}

Lastly, there is no arbitrage between the wealth return and the bond return.

[No Arbitrage] r(S) = rB(S)

E Fiscal multipliers and corporate taxation

In this section, we compare the fiscal multipliers when the infrastructure spending

is combined with different tax policies. Three different policies are considered.

The first policy is decreasing the corporate tax rate by 33% from the baseline level

(27%→18%). The second policy uses the baseline level (27%), and the last policy

increases the corporate tax rate by 33% from the baseline level (27%→36%).5 The

remaining balance in the fiscal budget after the change in taxation is financed by

the lump-sum tax. Thus, the third policy collects the least amount of lump-sum

4There are two fixed points for the stationary infrastructure stock. We focus only on the greater
one, which is a stable fixed point.

5The third policy mimics the Biden administration’s original plan to increase the corporate tax
rate by 33%. As our baseline tax level is 27% while the corporate tax rate of 2022 is 21%, there is a
level difference in the tax rate.
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tax among the three policies.6

Table E.2: Fiscal multipliers

Fiscal multipliers Low Tax Baseline High Tax

Output
Short-run 1.2267 1.0878 0.9517
Long-run 2.1738 1.9206 1.6721

Short-run (2 years)
Consumption 0.1014 0.1479 0.1933
Investment 0.0891 -0.0434 -0.1734
Public capital 1.6683 1.6695 1.6709
Labor income 0.8764 0.7134 0.5550

Long-run (5 years)
Consumption 1.0035 0.9376 0.8727
Investment 0.1245 -0.0137 -0.1495
Public capital 4.0092 4.0102 4.0114
Labor income 1.6049 1.3636 1.1281

Table E.2 reports the fiscal multipliers across the three corporate tax policies.

In the first policy with low corporate tax, the short-run multiplier is around 1.227,

which is the greatest among the three. In the last policy with high corporate tax,

the short-run multiplier is around 0.952, which is the lowest among the three. The

same ranking is observed for the long-run multipliers.

One of the main channels that cause the differences in the fiscal multipliers is

the firm-level investment. When the fiscal spending is combined with the low cor-

porate tax policy, due to the increased incentive of cumulating the future capital

stock, the private investment crowds in, as can be seen from the positive invest-

ment multiplier of 0.089. However, in other cases, the greater public capital stock

6Our fiscal multiplier analysis is based on the impulse response to the MIT fiscal spending
shock under perfect foresight. Therefore, the representative household becomes indifferent be-
tween lump-sum tax financing and debt financing as long as the lifetime income is unaffected. If
the model considers household heterogeneity under the borrowing limit and frictional financial
market, this indifference collapses, leading to divergent fiscal multipliers between tax financing
and debt financing as in Hagedorn, Manovskii, and Mitman (2019).
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crowds out the private capital investment. A similar pattern is observed in the

long-run fiscal multipliers of private investment.

The differences in the response of private capital investment to the fiscal policy

lead to the differences in the labor income response. The greater the private invest-

ment, the greater the employment effect on the economy. In the low corporate tax

policy, the labor income multiplier is 0.876; in the baseline corporate tax policy, the

labor income multiplier is 0.713; in the high corporate tax policy, the labor income

multiplier is 0.555.

However, the low corporate tax policy is not a free lunch. The low corporate tax

policy leads to the lowest consumption multiplier of 0.101 in the short run. This is

because this tax policy requires the greatest lump-sum tax to finance the spending

shock. This clearly shows what is the trade-offs in corporate tax policies; the low

tax policy sacrifices the short-run welfare to achieve long-run welfare. In the long

run, due to the private investment and labor income channels, the fiscal multiplier

is the greatest for the low corporate tax policy.

F Assumptions for the cross-state analysis

In this section, we specify the assumptions to implement the cross-state analysis

using the baseline model. As there is only a representative household in this econ-

omy, the state-level consumption is defined under the following assumptions:

• All the incomes are state-specific, and there is no cross-state transfer.

• Each equity is exclusively owned by the state’s household.
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• Bond holding and lump-sum subsidies are attributed to each state propor-

tionately to the exogenous fiscal spending ratio.

Given these assumptions, the state-level consumption can be properly defined

due to the separate budget clearing across the states. One can introduce two house-

holds in the model to capture Poor and Good households separately, but this can

be done only at a high computational cost and the model complication.

G The marginal product of private and infrastructure

capital

In this section, we assess the equilibrium level of the marginal product of private

and public capital stock. Table G.3 shows the marginal product of private and in-

frastructure capital stocks for the entire economy (column 1), the Good state (col-

umn 2), and the Poor state (column 3). In this economy, due to the presence of

the capital adjustment cost at the firm level, the marginal product of capital varies

across the firms.7 We use the average marginal product of capital for the analysis.

Table G.3: The marginal product of private and public capital

Marginal product of capital (MPK) Aggregate Good state Poor state

Private 0.2840 0.3345 0.0426

Infrastructure 0.4799 0.5449 0.1691

The marginal product of public capital stock is substantially higher than the

private counterpart. This shows that the current stock of public capital is less than

7The convex adjustment cost depends on the capital stock of the firm, which makes the marginal
cost of investment different across the firms. This leads to the heterogeneous marginal product of
capital stock in equilibrium.
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the socially desired level.8 Moreover, the public-to-private MPK ratio is more than

twice greater in the Poor state than in the Good state. This shows that the relative

shortage of public capital provision is more severe in the Poor state than in the

Good state in equilibrium. However, this relative shortage is an efficient outcome

in the model, so the normative interpretation is limited.

H The role of time to build

In this section, we analyze the role of time to build on the fiscal multiplier. On

top of the one-year time to build in the baseline, we assume there is an extra year

of time to build for capital stock to be utilizable after the investment as in Ramey

(2020) (two years, in total). Therefore, the law of motion of the public capital stock

is as follows:9

NA,t+2 = NA,t+1(1 − δN ) +Ft −
µ

2

(
Ft

NA,t+1

)2
NA,t+1

Nj,t+1 = ζ jNA,t+1 for j ∈ {P, G}

Ft =


Fss + ∆G if t = 1

Fss otherwise

where Fss is the stationary equilibrium level of fiscal spending on infrastructure.

Due to the time lag between the fiscal policy shock and the arrival of the public

capital stock, there exists a news component in the policy, which will be analyzed

further in this section.

For this analysis, the fiscal multiplier is measured by the sum of the present

values over the first three years for the short run and over the six years for the long

8If there were a competitive market for public capital, the price of the public capital would adjust
in the direction to equate the shadow value of private and public capital.

9For the consistency in the notation with the previous formulations, we leave the time index of
the future public capital stock to be t + 1 + s where s = 1.
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Table H.4: Fiscal multipliers across the states under time to build of two years

Fiscal multipliers T2B T2B - PE Baseline Baseline - PE

Output
Short-run 1.0280 2.0301 1.0878 1.8582
Long-run 1.8476 5.4015 1.9206 5.0314

Short-run (2 years)
Consumption 0.1274 0.6414 0.1479 0.6052
Investment -0.0726 0.2897 -0.0434 0.1892
Public capital 1.6327 1.6383 1.6695 1.6728
Labor income 0.6596 1.4504 0.7134 1.2935

Long-run (5 years)
Consumption 0.9038 3.6506 0.9376 3.4216
Investment -0.0435 0.5858 -0.0137 0.4769
Public capital 3.9734 3.9789 4.0102 4.0135
Labor income 1.3011 3.7605 1.3636 3.4781

run after the initial fiscal spending shock.10

Table H.4 reports the fiscal multipliers when there is time to build of two years.

The first column is the general equilibrium multipliers under the two years of the

time to build; the second reports the same one in the partial equilibrium; the third

is the baseline model; and the last is the baseline model in the partial equilibrium.

The output fiscal multiplier decreases in general equilibrium, when the time-to-

build is extended to two years (1.088→1.028), consistent with Ramey (2020). On

the other hand, the output fiscal multiplier increases in the time to build in the

partial equilibrium (1.858→2.030).

To illustrate the role of the extended time to build, Figure H.1 plots the impulse

responses of equilibrium allocations. Due to the extended time to build, the cap-

italized government expenditure in the dashed line spikes one year after the be-

ginning of the endogenous responses in the equilibrium allocations. As the fiscal

10Previously, it was 2 years for the short run and 5 years for the long run without the extended
time to build.
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Figure H.1: The impulse responses under the time to build of two years
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spending shock hits, consumption immediately drops as the lump-sum tax imme-

diately puts downward pressure on the household’s consumption. This makes the
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household more willing to supply the labor. On the other hand, the production

side does not face any change in the infrastructure until one year after the shock.

Therefore, the increased labor supply at the period of shock (t = 1) leads to a

lower wage and greater employment. Then, this feeds back into increased output

at t = 1. The interest rate increases as the marginal utility of consumption at t = 1

increases, resulting in a decrease in private investment. After the infrastructure

spending becomes capitalized, the demand for labor increases while the willing-

ness for the labor supply decreases (income effect). This leads to an increase in the

wage while the employment stays almost unchanged from the stationary equilib-

rium level.

The news effect impacts the fiscal multiplier in the partial equilibrium, as it al-

lows the agents with the rational expectation to adjust their allocations optimally

even before the spending shock is capitalized. However, this effect is dominated by

changes in the price once we consider the general equilibrium effect. The agents’

adjustment before the shock capitalization results in wage and interest rate adjust-

ment, dampening the fiscal multiplier even in a greater magnitude than the one-

year time-to-build. This is because the interest rate adjustment occurs at one time,

and the increased cost of investment at the period before the spending shock leads

to a lowered capital stock. Under the real friction such as the convex adjustment

cost, the lowered capital stock leads to a greater adjustment cost in the following

period when the fiscal spending shock is materialized, leading to a substantially

dampened fiscal multiplier. Therefore, this is an outcome of the interaction be-

tween the news effect and the real friction.
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I The representative-agent model: An extended ver-

sion of Baxter and King (1993)

We consider the following representative-firm problem where the notations are

the same as the baseline model except for ζ, which is the scale parameter for the

infrastructure capital. It is worth noting that we use the same Φ level for the

representative-agent model as in the baseline. This is to preserve the symmetry

in the adjustment costs between the private sector and the public sector.11 Also,

the household and government sides are identical to the baseline model, so we

abstract from the description for the sake of brevity.

J(k; S) = max
k′

(1 − γ)

(
γ

w(S)

) γ
1−γ

A
1

1−γ N
ζ

1−γ k
α

1−γ (1 − τc)(1 − τh)

+ (−k′ + (1 − δ)k)(1 − τh) + τδk(1 − τh)

− µ

2

(
k′

k
− (1 − δ)

)2

k(1 − τh) +
1

1 + r(S)
EJ(k′; S′)

where J is the value of the representative firm; S is the aggregate state that include

the same components as the baseline model’s aggregate state, except for the dis-

tribution of capital Φ replaced by the aggregate capital stock K. The first-order

optimality conditions are as follows:

[k′] :
(

1 + µ

(
k′

k
− (1 − δ)

))
(1 − τh) =

1
1 + r(S)

EJ1(k′; S′)

11If the representative-agent economy’s private capital adjustment cost is differently calibrated,
it necessarily implies less or more efficient adjustment than the infrastructure capital adjustment.
Also, it is not desirable to change the public capital adjustment cost parameter for the sake of a fair
comparison of the fiscal multipliers across the models.
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Also, from the envelope theorem, we have

[k] : J1(k; S) =
α

1 − γ
(1 − γ)

(
γ

w(S)

) γ
1−γ

A
1

1−γ N
ζ

1−γ k
α

1−γ−1(1 − τc)(1 − τh)

+ (1 − δ + τcδ)(1 − τh) +

(
µ

2

(
k′

k

)2

− µ

2
(1 − δ)2

)
(1 − τh)

J Proof of Proposition 1

Proposition 1. Suppose we are given the micro-level data set (k1, k2, y1, y2, N) s.t.

∃i ∈ {1, 2} s.t. ki < N, N ≤ k1 + k2,
y1

k1
=

y2

k2
.

Suppose the micro-level estimates (z, λ) and the aggregate-level estimate ξ are exactly

identified by fitting the data with the production functions as follows:

f (k1, N; λ, z) = y1

f (k2, N; λ, 1) = y2.

f (k1 + k2, N; ξ, 1) = y1 + y2

Then, if the micro-level input elasticity satisfies λ ≥ 1, the aggregate-level input elasticity

satisfies ξ < 1.

Proof. Without loss of generality suppose k1 > k2, z > 1, and let k2 < N. From the

18



production functions, we have

y1 = z
1
α B(θk

λ−1
λ

1 + (1 − θ)N
λ−1

λ )
λ

λ−1

y2 = B(θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ )

λ
λ−1

y1 + y2 = B(θ(k1 + k2)
ξ−1

ξ + (1 − θ)N
ξ−1

ξ )
ξ

ξ−1

where B :=
(

1−α
w

) 1−α
α . Therefore, the following relationships hold (from the sec-

ond and the third equations above):

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

(
y1 + y2

B(k1 + k2)

) ξ−1
ξ

= θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

.

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ξ ≥ 1. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1.

Hence, y2
Bk2

> 1. From the condition y1
k1

= y2
k2

,

1 <
y2

Bk2
=

y1 + y2

B(k1 + k2)
.

As ξ ≥ 1, we have

1 <

(
y1 + y2

B(k1 + k2)

) ξ−1
ξ

= θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

.
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However, N ≤ k1 + k2. Thus,
(

N
k1+k2

) ξ−1
ξ ≤ 1. This leads to

θ + (1 − θ)

(
N

k1 + k2

) ξ−1
ξ

≤ 1,

which is a contradiction. Therefore, if the micro-level input elasticity satisfies λ ≥

1, then the aggregate-level input elasticity satisfies ξ < 1. ■

K Proof of Proposition 2

Proposition 2. Suppose we are given the micro-level data set (k1, k2, y1, y2, N) s.t.

∃i ∈ {1, 2} s.t. ki < N, 1 < N ≤ k1 + k2,
y1

k1
=

y2

k2
.

Suppose the micro-level estimates (z, λ) and the aggregate-level estimate ζ are exactly

identified by fitting the data with the production functions as follows:

f (k1, N; λ, z) = y1

f (k2, N; λ, 1) = y2.

h(k1 + k2, N; ζ, 1) = y1 + y2

Then, if the micro-level input elasticity satisfies λ ≥ 1, the public capital scale parameter

satisfies ζ > 0.

Proof. Without loss of generality suppose k1 > k2, z > 1, and let k2 < N. From the
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production functions, we have

y1 = z
1
α B(θk

λ−1
λ

1 + (1 − θ)N
λ−1

λ )
λ

λ−1

y2 = B(θk
λ−1

λ
2 + (1 − θ)N

λ−1
λ )

λ
λ−1

y1 + y2 = B(k1 + k2)N
ζ
α

where B :=
(

1−α
w

) 1−α
α . Therefore, the following relationships hold (from the sec-

ond and the third equations above):

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

y1 + y2

B(k1 + k2)
= N

ζ
α .

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ζ < 0. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1.

Hence, y2
Bk2

> 1. From the condition y1
k1

= y2
k2

,

1 <
y2

Bk2
=

y1 + y2

B(k1 + k2)
.

Thus, we have

1 <
y1 + y2

B(k1 + k2)
= N

ζ
α ,

which is a contradiction, as ζ < 0 and N > 1. Therefore, if the micro-level in-

21



put elasticity satisfies λ ≥ 1 under the non-rivalry, then the public capital scale

parameter satisfies ζ > 0 (Baxter and King, 1993). ■

L Simple theory with the continuum of firms

Proposition 3. Suppose we are given the micro-level data set (k j, yj, N), j ∈ [0, 1] s.t.

∃i ∈ [0, 1] s.t. ki < N, N ≤
∫ 1

0
k jdj,

yj

k j
= C ∈ R.

where C is a constant. Suppose the micro-level estimates (zj, λ) and the aggregate-level

estimate ξ are exactly identified by fitting the data with the production functions as follows:

(Normalizer) z0 = 1

f (k j, N; λ, zj) = yj

f
(∫

k jdj, N; ξ, 1
)
=
∫ 1

0
yjdj

Then, if the micro-level input elasticity satisfies λ ≥ 1, the aggregate-level input elasticity

satisfies ξ < 1.

Proof. Without loss of generality suppose k0 < N. From the production functions,

we have

y0 = B(θk
λ−1

λ
0 + (1 − θ)N

λ−1
λ )

λ
λ−1

∫ 1

0
yjdj = B

θ

(∫
k jdj

) ξ−1
ξ

+ (1 − θ)N
ξ−1

ξ


ξ

ξ−1

where B :=
(

1−α
w

) 1−α
α . Therefore, the following relationships hold (from the sec-
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ond and the third equations above):

(
y0

Bk0

) λ−1
λ

= θ + (1 − θ)

(
N
k0

) λ−1
λ

 ∫ 1
0 yjdj

B
(∫ 1

0 k jdj
)


ξ−1
ξ

= θ + (1 − θ)

(
N∫ 1

0 k jdj

) ξ−1
ξ

.

Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume ξ ≥ 1. As N > k0,
(

N
k0

) λ−1
λ

> 1. Thus,

(
y0

Bk0

) λ−1
λ

= θ + (1 − θ)

(
N
k0

) λ−1
λ

> 1.

Hence, y0
Bk0

> 1. From the condition
yj
kj
= C,

1 <
y2

Bk2
=

∫ 1
0 yjdj

B
∫ 1

0 k jdj
.

As ξ ≥ 1, we have

1 <

 ∫ 1
0 yjdj

B
(∫ 1

0 k jdj
)


ξ−1
ξ

= θ + (1 − θ)

(
N∫
k jdj

) ξ−1
ξ

.

However, N ≤
∫

k jdj. Thus,
(

N∫
kjdj

) ξ−1
ξ

≤ 1. This leads to

θ + (1 − θ)

(
N∫
k jdj

) ξ−1
ξ

≤ 1,

which is a contradiction. Therefore, if the micro-level input elasticity satisfies λ ≥

23



1, then the aggregate-level input elasticity satisfies ξ < 1. ■

Proposition 4. Suppose we are given the micro-level data set (k j, yj, N), j ∈ [0, 1] s.t.

∃i ∈ [0, 1] s.t. ki < N, 1 < N ≤
∫ 1

0
k jdj,

yj

k j
= C ∈ R.

where C is a constant. Suppose the micro-level estimates (zj, λ) and the aggregate-level

estimate η are exactly identified by fitting the data with the production functions as follows:

(Normalizer) z0 = 1

f (k j, N; λ, zj) = yj

h
(∫

k jdj, N; η, 1
)
=
∫ 1

0
yjdj

Then, if the micro-level input elasticity satisfies λ ≥ 1, the public capital scale parameter

satisfies η > 0.

Proof. Without loss of generality suppose k0 < N. From the production functions,

we have

y0 = B(θk
λ−1

λ
0 + (1 − θ)N

λ−1
λ )

λ
λ−1∫

yjdj = B
(∫

k jdj
)

N
η
α

where B :=
(

1−α
w

) 1−α
α . Therefore, the following relationships hold (from the sec-

ond and the third equations above):

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

∫
yjdj

B
∫

k jdj
= N

η
α .
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Suppose we are given λ ≥ 1. We will prove the proposition by contradiction, so

we assume η < 0. As N > k2,
(

N
k2

) λ−1
λ

> 1. Thus,

(
y2

Bk2

) λ−1
λ

= θ + (1 − θ)

(
N
k2

) λ−1
λ

> 1.

Hence, y2
Bk2

> 1. From the condition y1
k1

= y2
k2

,

1 <
y2

Bk2
=

∫
yjdj

B
∫

k jdj
.

Thus, we have

1 <

∫
yjdj

B
∫

k jdj
= N

η
α ,

which is a contradiction, as η < 0 and N > 1. Therefore, if the micro-level in-

put elasticity satisfies λ ≥ 1 under the non-rivalry, then the public capital scale

parameter satisfies η > 0 (Baxter and King, 1993). ■
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